கதிரியக்கத்தனிமத்தின் சிதைவுச்சமன்பாடு!

அறிவியலைப் பொறுத்தவரை, பார்ப்பவை, அளப்பவை அனைத்தையும் எண்களுக்குள் அடக்குவதற்கு முயல்கிறோம். எதையெல்லாம் பார்க்கிறோமோ, எவையெல்லாம் மாறுகிறதோ, அவையெல்லாம், பொதுவாகவே எல்லோர்மனதுக்கும் பிடித்தமாகிறது!!

வண்ணக்குழைவுடனிருக்கும் வானமாகட்டும், நம் கண்முன்னர் வளரும் குழந்தைகளின் வளர்ச்சியாகட்டும், இசையில் உண்டாகும் இனிமையாகட்டும் எல்லாமே மாற்றத்தின் விளைவால் நடப்பவை!
இசையில் 7 சுரங்களில் (~7 அதிர்வெண்) ஏற்படும் மாற்றமும் , சுரங்களுக்கிடையேயான மாற்றங்களுக்குக் காரணமான அமைதியான இடைவெளியுமே (தாளம்/ரிதம்)இனிமைக்குக் காரணமாகிறது.

மாற்றம் எல்லாம் சரி, அம்மாற்றங்கள் எவ்வளவு வேகமாக நடக்கிறதென்பதை அறிந்துகொள்ள விழைகிறோம். சராசரி மனிதனின் உடல் உயரவளர்ச்சியென்பது, பிறப்பிலிருந்து மனிதனின் சராசரிஉயரத்தையெட்டும்வரை, நேர்கோட்டுவளர்ச்சியாகக் கொள்ளலாம். அம்மனிதர் அவ்வுயரத்தையெட்டியபின் இறப்புவரை, அதே உயரத்தைக் கொண்டிப்பார் எனலாம். இதை சமன்பாடாக இவ்வாறு எழுதலாம்.

குழந்தையாக இருக்கும்போதுள்ள உயரத்தை “c” எனலாம்.

c-ல் இருந்து வளர்கிறார்.

1 வயதில் உயரம் = c + 1 வருடத்துக்கான வளர்ச்சி (h1)
2 வயதில் உயரம் = c + முதல்வருட வளர்ச்சி(h1) + இரண்டாம் வருடவளர்ச்சி
(h2)
3 வயதிலுயரம் = c + முதல்வருட வளர்ச்சி + இரண்டாம் வருடவளர்ச்சி+மூன்றாம் வருடவளர்ச்சி
.
.
.
20 வயதிலுயரம் = c + முதல்வருட வளர்ச்சி + இரண்டாம் வருடவளர்ச்சி+மூன்றாம் வருடவளர்ச்சி + ….+ 20வது வருடவளர்ச்சி

 

இதைக் குறியீட்டுவடிவத்தில் இப்படி எழுதிக்கொள்ளலாம்; எல்லாவருடமும் ஒரே அளவிலான வளர்ச்சியென்று வைத்துக்கொள்வோம். அதாவது h1=h2=h3=…=h25= h

1 வயது உயரம் H_1= c+ h
2 வயது யரம் H_2= c+ h+h = c+ 2 h
3 வயது யரம் H_3= c+ h+h+h = c+ 3 h
.
.
.
t வயதில் உயரம் H_t = c + t * h

H_t = c+ t * h

IMG_20171206_220317.jpg

H_t = c+h t

ஒருவேளை, எல்லாவருடமும் ஒரே அளவிலான வளர்ச்சியென்று வைத்துக்கொள்வோம், என்றச்சொற்றொடரை நுண்கணித மொழியில் எழுத! \frac{dH_t}{dt}=h;

\frac{d}{dx} புலி!:

இதில் \frac{d}{dx}-ஐ பசிகொண்டலையும் புலி போல் கொள்வோம்; அப்புலி மாறாத எண் தனித்து நின்றால் முட்டையாக்க்விடும். மாறும் மாறியென்றால் கடித்துக்குதறி அதன் தன்மையை மாற்றிவிடும்!

இதில் d() அல்லது \frac{d}{dx} – பசிகொண்டலையும் புலி போல் கொள்வோம்!
d/dx என்பதால் அதன் ஊன் x ஆகும்! தின்பதற்கொன்றும் கிடைக்காத போது புல் தின்னும் புலியிது! ஒரு எண் தனித்துநின்றால் ஒன்றும் அற்றதாகிவிடும் (d(constant) =0)! ஆயினும், மாறா எண்ணோடு ஒரு மாறும் மாறி(இங்கே x)நின்றால், கனியிருக்கக் காய்கவரலாகுமா?! ஆக மாறியை அப்படியேவிட்டுவிட்டு , மாறியானப் புலாலை உண்ணும்! \frac{d}{dx}[c. x^n] = c. n x^{(n-1)}$

எப்படி ?

\frac{d H_t}{dt} = \frac{d}{dt} (c+ t*h) = \frac{d}{dt} (c ) + \frac{d}{dt} (t*h)

c= பிறக்கும் போது உள்ள உயரம். அது வெறும் எண்

\frac{d H_t}{dt} = 0+ h. \frac{dt}{dt}= h.1 = h

“எல்லாவருடமும் ஒரே அளவிலான வளர்ச்சியென்று வைத்துக்கொள்வோம்” என்றச்சொற்றொடரை நுண்கணித மொழியில் எழுதிவிட்டோம்! \frac{d H_t}{dt} = h;

இது வளர்ச்சி சம்பந்தப்பட்டது! அதனால் \frac{d H_t}{dt} = + h

ஒரு வேளை வயதாக ஆக குள்ளமாவோம் என்று இருந்தால் , \frac{d H_t}{dt} = - h என்று சொல்லுவோம். இதெல்லாம் ஒரு வசதிக்கானது. மாறுகிறது, ஆனால் எப்படி மாறுகிறது என்று ஓரளவு இந்த சமன்பாடுகள் கூறுகிறது.

ஓரளவு உண்மையையொட்டி…

நாம் இதுவரை, ஒரு சராசரி மனிதரை எடுத்துக்கொண்டிருக்கிறோம்! ஆனால், ஒவ்வொரு மனிதரும் ஒவ்வொரு மாதிரி வளருகிறோம், அதற்கு பற்பலக் காரணிகள் இருந்தாலும், ஒரே ஒரு காரணியாக உணவின் அளவை மட்டும் எடுத்துக்கொள்வோம்!

எடுத்துக்காட்டுக்கு, ஒரு மனிதன் சாப்பிடும் அளவையும்(k என்க) கணக்கில் சேர்த்தால், வருடத்தைப் பொருத்த வளர்ச்சி மாறும் வீதத்தை

\frac{d \mathcal{H}(t)}{dt} = +k \mathcal{H}(t)

(\frac{d H_t}{dt} = +k h என்றெழுதியதை, என்னுடைய நண்பன் குமரன், நுண்கணிதந்தெரியாதவர்கள்தவறாகப் புரிந்துகொள்ள வாய்ப்புள்ளது என்றுக்கூறியிருந்ததைக் கருத்தில் கொண்டு \frac{d \mathcal{H}(t)}{dt} = +k \mathcal{H}(t) என மாற்றியிருக்கிறேன்.)

என மாறும்! k-க்குத் தக்கன, வளர்சிதைமாறும்வீதம் மாறும்.  \mathcal{H}(t) என்பது t எனும் நேரத்தில், நாம் எடுத்துக்கொண்ட மனிதரின் உயரமாகக்கொள்க.

இதே விசயத்தை,குவிந்துகிடக்கும் ஒருபொருளை, கொஞ்சங்கொஞ்சமாக அள்ளும் போது, எப்பொழுது குறையும் என்பதைக் கணக்கிட முடியும் , எப்படிக்குறையும் என்பதையும் ஊகிக்கமுடியும்!

இதையே, கதிரியக்கத்தனிமங்களின் தன்மை தொடர்ந்து கதிர்களை உமிழ்வதென்பது, கதிர்களின் வெளிப்பாடு எனில் சக்தியின் வெளிப்பாடு, சக்தியின் அளவும் ஒரு குறிப்பிட்ட நிறையில் குறிப்பிட்ட எண்ணிக்கையைப் பொருத்தே இருக்கும். அதனுள் இருக்கும் துகள்கள் கதிர்களாக வெளியேறுவதால் வருவது. ஆரம்பத்தில் N அணுக்கள் இருந்திருந்தால், நேரம் ஆக ஆக எண்ணிக்கையில் ஏற்படும் மாற்றத்தைக் குறிக்க \frac{d N}{dt} எனலாம், இப்பொழுது எவ்வளவு இருக்கிறது என்பதை N-இன் மடங்கிலேயே கூறலாம் அல்லவா, அதாவது கால்வாசி (N/4) அரைவாசி (N/2) என்பதுபோல், எந்தவகையான தனிமம் என்பதைப் பொருத்து இம்மடங்கு மாறும் என்பதால், பொதுவாக \lambda என்றக் குறியீட்டால் குறிக்கலாம், அதே போல் இது தனிமமானது குறைந்துகொண்டேயிருக்கும், ஆக, அந்த மைனஸ்/ கழித்தல் குறியீடு. இதுவரை சொன்னதைச் சுருக்கி ஒரு சமன்பாட்டுமொழியில் எழுதிவிடலாம்.

\frac{d N}{dt} = - \lambda N

இது வகைக்கெழு சமன்பாட்டில் ஒரு வகை.

இவ்வகைக்கெழு சமன்பாட்டைத் தீர்க்கும் வகையைப் பார்ப்போம்.

  1.  N வகையை எல்லாம் ஒருப்பக்கம் சேர்ப்போம், = குறியீட்டுக்கு அப்பக்கம் உள்ளதை, இப்பக்கம் கொண்டுவருவோம்.  \frac{d N}{N \, dt} = -\lambda
  2. dt ஐ =க்கு அப்பக்கம் கொண்டுசெல்ல \frac{d N}{Nt} = -\lambda \, dt
  3.  இருப்பக்கமும் தொகைப்படுத்த  \int dx எனும் இயக்கியைப் போடுக.

    \implies \frac{df(x)}{d x} என்பது f(x)-ஐப் பகுக்கும் புலி என்றால். \int f(x) dx என்பது தொகுத்துக்கொடுக்கும் வள்ளல்! (இவையெல்லாம் விளையாட்டுவிதிகள் போலத்தான்.)  

    \implies மாறிலிமுன் /எண்முன் \int dx வரின், அதுசார்ந்த மாறி(x+C)வந்து பல்கும்! பெருகும்!! (C என்பது ஒரு மாறிலி,  நாம் f(x) ல் எப்பகுதியைத்  தொகைப்படுத்துகிறோம் என்பதைப் பொருத்து இந்த C-இன் மதிப்பு வரும்)

    \implies அதுசார்ந்த மாறிவரின், உதாரணத்துக்கு x^n என்றால் x^{n+1} ஆக அதிகரித்துத்தரும் \int x^n dx =\frac{x^{n+1}}{n+1}+C    இதில் C- மாறிலி!

    \implies ஒரு வேளை x^nஎன்பதை, x_1 எனும் இடத்திலிருந்து  x_2 எனும் இடம் வரை தொகைப்படுத்தினால்.

    \int_{x_1}^{x_2} x^n dx =\frac{x^{n+1}}{n+1}\big|_{x_1}^{x_2} என வரும். 
    பின்னர் இதன் எல்லைகளை உள்ளீடு செய்ய,
    \int_{x_1}^{x_2} x^n dx = \frac{x_{2}^{n+1}}{n+1} - \frac{x_{1}^{n+1}}{n+1}  என ஆகும்

    f(x)=1/x என்பது சார்பு எனில், \int\frac{ dx}{x} = \log_e{(x)}+C

    இன்னும் சுருக்கமாக,
    \int x^n dx =\begin{cases} \frac{x^{n+1}}{n+1}+C  &\mbox{for  }n\neq -1 \\ \log_e{(x)}+C&\mbox{ for } n =-1 \end{cases}

    \int_{N_0}^N(t)  \frac{d N}{N} = -\lambda \int \, dt   இதில்  N_0 ஆரம்பநிலையில் நம்மிடம் இருந்த தனிமத்தின் அணுக்களின் எண்ணிக்கை என்றால், N(t) என்பது t எனும் நேரத்தில் அணுக்களின் எண்ணிக்கை.

  4. கடந்தக்குறிப்பில் கொடுக்கப்பட்ட தொகைநுண்கணிதத்தின் பண்புகளைக் கொண்டு.  கடைசி சமன்பாட்டைத் தொகுக்க,\log_e{N} \big|_{N_0}^{N(t)} = -\lambda t\big|_{t_0}^{t}\log_e{N(t)} - \log_e{N_0}  = -\lambda \times (t-t_0)

    \implies \log_e இன் பண்புகள்:  மடக்கையின் தன்மையே, பெரிய எண்களை பெருக்கவும் வகுக்கவும் ஆவதற்கான வேலைகளையும் நேரத்தையும் “மடக்கிச்சுருக்குதலேயாகும்”,

    \implies log_e-இன் அடிமானம் e-ஆகும், e என்பதை இயற்கை மாறிலி என்போம், அதுவொரு விகிதமுறா எண்!  

    \implies மடக்கிய வேலையை, தலைகீழாக்க, \log_e a = b என்பதை, log இல்லாமல், e^b=a   என எழுதலாம். log_e(e) = 1

    \implies அதாவது, இரு எண்களின் பெருக்கல், மடக்கையில் கூட்டலாகும்  \log_e(a) \log_e(b) = \log_e(a)+\log_e(b)

    \implies இரு எண்களின் வகுத்தல் மடக்கையில் கழித்தலாகும்!  \frac{\log_e(a)}{\log_e(b)} = \log_e(a)-\log_e(b)

    இப்பண்புகளை நம் சமன்பாட்டிலிட,
    \log_e(\frac{N(t)}{N_0}) = -\lambda \times (t-t_0)
    \implies \frac{N(t)}{N_0} = \exp( -\lambda \times (t-t_0))
    \implies N(t) = N_0 \exp( -\lambda \times (t-t_0)
    ஆக, நம்மிடம் இருக்கும் அணுக்களின் எண்ணிக்கையை,

    N(t) = N_0 \exp( -\lambda \times (t-t_0)

    என்ற சூத்திரத்தின் மூலம், எந்நேரத்திலும் கணக்கிட்டுக்கொள்ளலாம்!

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s