கற்றலும் சமூகமும் -3: கேள்விகளும் சான்றோர்குழாமும்- யார் ஆய்வாளர்?

என் வாழ்க்கைத்துணை அம்மு கூறினார், பேராசிரியர். க்ளௌஸ் சூல்டன் (Klaus Schulten) இறந்துவிட்டார் என.  எனக்கு யாரென்று உடனேத் தெரியவில்லை, அம்மு அவருடைய மூலக்கூறியக்கவியல் கோட்பாட்டை அவர்கள் ஆராய்ச்சியில் பயன்படுத்தியதாகக் கூறினார், பின்னர் தான் உணர்ந்தேன், குவாண்டவியற்பியலை உயிரிகளிடம்-உயிர்வேதியியற்பியல் (Biophysical chemistry), ஒளிச்சேர்க்கை (photosynthesis), மூலக்கூறியற்பியல் (molecular dyanmics and physics), மீத்திறன் கணியம் (High Performance Supercomputing)-காணும் முறைமையில், அவரும் ஒரு முன்னிலை ஆய்வாளர்.

சரி, ஒரு ஆய்வாளர் என்பார் எப்படியிருப்பார்?  ஆய்வாளருக்கு சிறுவயதில் கல்லூரியில் கற்றுக் கொடுத்த ஆசிரியர்கள் போல் இருப்பாரா?  1970கள் முடியப் பிறந்த, கிராமத்தின் சூழ்நிலையில் இருந்து வந்த என் போன்றவர்களுக்கு அடுத்து மிகப்படித்தவராகத் தெரிபவர் அவ்வூரில் உள்ள மருத்துவர்!  நன்றாகப் படித்தவர்கள் உண்மையில் எவ்வளவு தெளிவாக உள்ளார்கள்.  ஆயினும், எனக்கு இவ்விரு தொழில் பார்ப்பவர்களின் மீதும் எப்பொழுதும் கடுமையான வருத்தங்கள் இருந்ததுண்டு.

ஆசிரியப் பணியாற்றுபவர்கள் மாணவர்களைக் கேள்விகேட்கத் தூண்டுகிறார்களா?! நிசமாகவே, மாணவர்களுககு கல்வியென்றால் விவாதம் சார்ந்தது என்பதேக் காண்பிக்கப்படுவது இல்லை.

நோயாளியொருவர் ஒரு கேள்வியை மருத்துவரிடம் கேட்கும் போது அதற்கான பதில் எவ்வளவுத் தரப்படுகிறது அல்லது பதிலளிப்பதற்கு ஏற்ப கொஞ்சமாவது, மருத்துவர்கள் தயாராயிருக்கிறார்களா?

ஒரு கதை:
என் அப்பா ஒருமுறை, மதுரை அரசு மருத்துவமனையில் அனுமதிக்கப்பட்டு இருந்த போது,  அங்கிருந்த என் தங்கையிடம் நான் தொலைபேசியில் பேசிக்கொண்டிருந்தேன்.  “என்ன? அவன் எந்திரித்துவிட்டானா” என ஒரு சத்தம் கேட்டது! அது அங்கு வந்த மருத்துவர்! கேட்டது என் அப்பாவை!!  அப்போது என் அப்பாவின் வயது 57, தமிழக அரசின் ஒரு பொறுப்பானப் பதவியில் அப்போது இருந்தார்கள். –பதவிக்குரிய மரியாதையென்பது நோக்கமல்ல– ஆயினும் மருத்துவர்களின் அதிகாரத்தோரணை. அங்கிருந்த மொத்தநாட்களும் இப்படித்தான் என் அப்பாவின் நான் எனும் அகங்காரத்தை உடைப்பதாகவேயிருந்திருக்கும். என்ன ஏது என்பதற்கு வழக்கம் போல் பதில் இல்லை.  எதேச்சதிகாரத்தில் வாழும் குடிமகனுக்குக் கூட ஏதோக் கொஞ்சம் மரியாதைக் கிடைக்கும் போல..

மற்றொரு கதை:
அம்முவின் அம்மா, கடந்த வருடம் தனியார் மருத்துவமனை இராமச்சந்திராவில் அனுமதிக்கப்பட்டிருந்தார்கள், பலக் குளறுபடிகளுக்கு மத்தியில், மருத்துவர்களை, என்ன பிரச்சினை என்று கேட்டதற்குக்கூட யாரும் பதிலளிக்கத் தயாராயில்லை.  மருத்துவர்களும் என்னப் பிரச்சினை என்பதை அறிந்திருக்கவில்லை என்பதும் ஒரு பிரச்சினை.

ஒரே சோதனையைத் திரும்ப திரும்ப செய்துக் கட்டணத்தை வேறு ஏற்றிக் கொண்டே இருந்தார்கள்.   ஆனால் அங்கும் கேள்விக்கேட்டதற்கு சரியான பதிலில்லை. லட்சக்கணக்கில் செலவும் ஆகிவிட்டது, அப்பொழுது கூட கேட்பதற்கு உரிமையில்லையென்பதை சொல்லாமல் சொன்னார்கள்.  சரி மருத்துவர்கள் அவ்வாறெனில், வரவேற்பறையில் உட்கார்ந்திருப்பவர் முதற்கொண்டு கணக்கர் வரை, அவர்கள் கொடுக்கும் செலவினச்சிட்டையை வைத்துக் க்கொண்டு கேள்வியே கேட்காமல் கேட்கும் பணத்தைத் தரவேண்டும் என்கிறார்கள்!  கேட்டால், கடுமையாக இருக்கிறது அவர்களின் பதிலும் மற்ற செயல்பாடுகளும்.  யாரும் பதில்தரமாட்டார்கள் கேட்பதைத் தரவேண்டும்.  அப்படியானால் பதில்தரா மருத்துவர்களுக்கும் சர்வாதிகாரிகளுக்கும் என்ன வேறுபாடு?
சரி, பதிலளிக்காத ஆசிரியர்களுக்கும் பதிலளிக்கவிரும்பா மருத்துவர்களுக்கும் என்ன பிரச்சினையாயிருக்கும்?  உனக்கு நான் சொன்னாலும் புரியாது என்பதா? அல்லது அடுத்த கேள்வி உன் வாயின்னுள்ளேயே அடக்கமாகிவிட வேண்டும் என்பதா?  இம்மனநிலை எங்கிருந்து வருகிறது?

இதில், நம்முடைய மக்களையும் குறைசொல்லாமல் இருக்கமுடியாது, எனக்கு இக்கேள்விக்கு பதில்தெரியாது என ஆசானோ, மருத்துவஞ்செய்யும் மருத்துவனோக்கூறினால், அவர்களை அடுத்து சுத்தமாக மதிப்பதில்லை.

ஆயினும், படித்தவர்கள் முற்றுமுதலாக அறிவதென்னவெனில், சாகும் தருவாயிலும் நான் ஏதும் அறிந்தேனில்லையென்பதாகத்தான் இருக்கும்.  சொல்லிக்கொடுக்கப்படும் அறிவியலும் தெரிந்த அறிவியிலும், அறிவியலின் ஒரு சிறுப்பகுதியே.

இன்னுமொரு கதை:
பகுத்தறிவை அறிவியல்தரும் எனும் போது அறிவியல் எப்படிப் போகுமோ அப்படிப் போய்த்தான் காணவேண்டும், எனக்கு வசதியாக இருக்கிறது என்பதற்காக, ஓரிடத்தில் நின்று கொண்டு, நான் பிடித்ததே சரியென்பது அறிவியலாளனின் போக்கு அல்ல, அது, ஒரு பக்கம் சார்ந்தக் கருத்தேயன்றி, உண்மையானத் தெளிவினையோ இயற்கையின் இயக்கத்தைப் பற்றிய அறிவையோத் தராது.  இன்று ஒரு விவாதத்தில், ஒரு மருத்துவரிடம் பேசும் போது இதுவே நிகழ்ந்தது,  குறிப்பிட்ட உணவுமுறை, பாடப்புத்தகம், குறிப்பிட்ட புள்ளியியல்முறை என்பதையும் தாண்டி, ஒரு போக்கு போய்க்கொண்டிருக்கிறதென்றால், அது என்னவெனக் காணவேண்டுமேயன்றி, நீ கூறுவதேத் தவறு என்பதும், எதிரில் பேசுபவரின் ஆய்வு அனுபவத்தின் அளவு எவ்வளவு என்பதையும் காணாமல் பிடித்தப்பிடியில் நிற்பதுவுமாக, “நீ பேசுவது தவறு, நான் பேசுவது மட்டுமே சரி” என்பதாக இருந்தது. அதே விவாதத்தில் வந்து கேள்விகள் கேட்ட உயிரியலாளர்களுக்கும், மருத்துவர்களுக்கும் கூட எனக்குக் கூறியப் பதிலே வந்தது.  ஒருவர் அவரை– மிகக்கடுமையாக, அனாவசியமாக — விமர்சித்திருந்தவிடத்தில் “நான் அறிவியல் பேசுகிறேன், நீ எதைப் பேசுகிறாய்” எனக்கேட்டிருந்தது மிகக்கடூரமான நகைமுரண்!!

இதில் பிரச்சினையென்னவெனில், பொதுவாகப் பேசுவோர்க்கும் விஞ்ஞானிகளுக்கும் தாங்கள் பேசும் போது தெரியும் வேறுபாட்டைக் கூட உணரவியலா அளவுக்கு இன்னொரு விஞ்ஞானம்பேசும் ஆளிருப்பது மிகவும் ஆச்சரியமாக உள்ளது, அல்லது மற்ற எல்லோரும் மொண்ணையானவர்கள் என்ற பொதுக்கருத்தா எனவும் விளங்கவில்லை.

பகுத்தறிவு என்பதும் யாதெனவும் விளங்கவில்லை, எதையோவொன்றைப் பகுத்தறிவு எனப் பேசிக்கொண்டேயிருக்கிறார்கள்.  பேசிக்கொண்டேயிருப்பதால் மட்டுமே, எப்படி அது பகுத்தறிவாகப் பரிமளிக்கும் என நினைக்கிறார்கள் எனவும் விளங்கவில்லை.  அறிவியலின் சில விசயங்களைப் பேசினாலே பகுத்தறிவா?? அறிவியில் என்பது யாதொரு விசயத்தையும் அக்கக்காகக் கழற்றி, என் விருப்பம் நான் கண்டறிந்தது, பழங்கருத்து, புதுக்கருத்து, நோபல்பரிசு வாங்கியவர் கூறியது, என்பதையும் தாண்டியதாக இருந்தால் மட்டுமே அறிவியல்.

அதே போல், பொதுவெளியில் ஜிஎம் விதைகள் போன்ற விசயங்களை எதிர்ப்பதோ, ஆதரிப்பதோ இல்லை, உண்மையில் என்ன நடக்கிறது என்பதைக் கண்டறிவதே அதன் வேலை.  தயவுசெய்து பெரிய பொறுப்பில் உள்ளவர்கள், சமூக மாற்றம் என்ற ஒன்று வேண்டுமெனில் அதற்காக உழையுங்கள்.  முடியவில்லையெனில், அரைகுறை அறிவியல் பேசுவதையும் பாரம்பரியம் பேசுவதையும் உங்களோடு வைத்துக் கொள்ளுங்கள்.

சரி, வழக்கம் போல, ‘தென்னைமரத்தைக் கொண்டுவந்து பசுவோடு ஏன் கட்டினேன்’ எனில், சூல்டனைப் பற்றி ஆரம்பித்ததற்கு காரணம், கோட்பாட்டு இயற்பியலரான அவர், அதையும் தாண்டி உயிரியல், நேனோ உயிர்நுட்பம் சார்ந்து யோசித்ததற்கு கேள்விகளும் பாரம்பரிய அறிவியல் மற்றும் அறிவைத்தாண்டியத் தேடலுந்தான் காரணமாக இருக்கிறது. இங்கு பழங்கால அறிவியல் மாதிரி ஒன்றைப் பேசிக்கொண்டே, ஆனால், அறிவியலின் உயிர்நாடியை அடக்கிவிடும் வேலைகளைத் தான் பெரும்பாலும் செய்கிறார்கள்.  தொழில்முறையில்லா அறிவியலாளர்கள் எனில் தங்களின் உண்மைநிலையைப்  புரிந்துகொண்டும் அறிவித்தும் அறிவியலை அணுகுவதே நலம்!

இதன் வரிசையில் முன்னால் எழுதப்பட்டவை:

  1. கற்றலும் சமூகமும் – 1: பள்ளிக் கல்வியமைப்பும் சூழலும்
  2. கற்றலும் சமூகமும் -2: ஆய்வும் கல்வியமைப்பும் சூழலும்
  3. ஏதும் தெரியாத ஆசிரியர்களும், எல்லாம் தெரிந்த மாணாக்கனும்!
  4. மூத்தோர் பெருமை, தடுமாறும் அறிவியல் மற்றும் கணித வரலாறு

மூத்தோர் பெருமை, தடுமாறும் அறிவியல் மற்றும் கணித வரலாறு

வர வர நம்மாட்களிடம் முன்னோர்களின் பெருமைகளையெடுத்துச் சொல்லவே பயமாகத் தான் உள்ளது. பார்த்தியா… என ஆரம்பித்துவிடுகிறார்கள்.. விவசாய விஞ்ஞானியான நண்பர் பிரபு  கணக்கதிகாரம்[1] பற்றியத் தகவலைப் பகிர்ந்திருந்தார்.   அவர்தம் பகிர்வுகள் எப்பொழுதும் அலறும் அறிவியல் உண்மைகளோடும் உசாத்துணைகளோடும்  எக்காளத்துடனும் நையாண்டியுடனும் எள்ளலும் துள்ளலும் தூக்கலாய் இருக்கும்.   அடிப்படையில் நான் புத்தர் காலத்து தத்துவங்களிலேயே உழன்று கொண்டிருப்பவனாயினும், என்னுடையப் பார்வை, ஒரு நவீன கட்டமைப்பு குவாண்ட இயற்பியலாளனுடையது (Foundational quantum physicist).  மூத்தோர் பெருமை, மூத்தோர் ஆய்வின் தற்காலத் தேவை என சரியான அளவீட்டைத் தேட வேண்டிய அவசியம் எல்லா அறிவியலாளர்களுக்கும் உள்ளது.   இருந்தாலும், தற்பொழுது அறிவியலுக்கு ஸ்வய சேவகம் செய்பவர்களால் பெரும் தலைவலியாய் உள்ளது.  இவர்களின் ஸ்வயம் பாகத்தால் முன்னோர் விசயங்களின் மேல் வெறுப்பு மட்டுமே உண்டாகும்.  இக்கட்டுரையில் குறிப்பிட்டிருக்கும் விவாதத்தில் இதை பேராசிரியர்கள் செயபாண்டியனும் செல்வகுமாரும் குறிப்பிட்டிருந்தனர்.  இருக்கட்டும்.

ஃபிபனாக்சி விகிதம்

சற்று கூர்ந்து கவனித்தால், இயற்கையில் பெரும்பாலும் எதிரொளி/லிக்கப் படும் தெய்வீக விகிதம் என அழைக்கப்படும் பிபனாக்சி விகிதத்தை (Fibonacci or divine ratio \varphi=\frac{1\pm\sqrt{5}}{2}) எளிதாகப் பிடிக்கலாம், அவ்வழி செல்கையில், தொடர் பின்னங்கள் (Continued fraction) தானாய் வந்து அமர்ந்து கொள்ளும், தொடர் பின்னங்களை பலா முட்களின் அமைவை வைத்தும் காணவியலலாம் (இது ஓர் அனுமானமே, அனுமானமே, அனுமானமே…).

\varphi =1+ \cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{\ddots}}}}

ஆனால், சுளையின் கணக்கு, விதைகளின் கணக்குக்கு விவசாய ஆன்றோர்களால் தான் பதில் சொல்ல முடியும்.  அதே நேரம், விதைகள்/சுளைகளும் முட்களைப் போல், அழகுவழி அமையும் பட்சத்தில், சூத்திரம் அமைப்பது மிக எளிது, அதுவும் இம்மாதிரி பயன்பாட்டுக் கணக்குகள், நம்மாட்களுக்கு பலாச்சுளை! அழகியலோடு இயற்கையின் நுட்பமும் சேர்ந்தது ஆதலால், அதுவொரு குத்துமதிப்பான அளவைத் தர வாய்ப்புகள் அதிகம். (முடிவிலா மின் சுற்றும், கொஞ்சம் ஜனரஞ்சக திண்ம அறிவியலும்! இக்கட்டுரையில் மின்சுற்றுகளிலும் மற்ற இயற்பியல் அமைவுகளிலும் பிபனாக்சி விகிதத்தைக் காண முடிவதைக் காண்பித்திருந்தேன்.)

சரி கண்டுபிடித்துவிட்டோம்… அதற்கு அடுத்த படி என்ன?  சுளை எண்ணிக்கை அதிகப்படுத்தலாமா அல்லது இயற்கையை அறிவதில் அடுத்தபடிக்கு முன்னேறலாமா??  என்பதே அறிவியலைத் தூக்கிப் பிடிப்போரின் கேள்விகள்.  முதலில் ஒன்றைப் புரிந்து கொள்ள வேண்டும், அறிவியல் என்பது, கிபி 17 ஆம் நூற்றாண்டில் ஆகாயத்திலிருந்து, நியூட்டனின் தலையில் விழவில்லை.  அது எப்போதும் நம்முள் இயங்கிக் கொண்டேயிருக்கிறது,  நாம் மனிதராக இல்லாமல்,  அமீபாவாக இருந்தாலும்,  ஒரு ஒவ்வாத வேதிச் சூழ்நிலையை உணர்ந்துவிட்டால் உடனே அமீபாவான நாம் நகரத் துவங்குவதிலேயே, உடல் உந்துதலிருந்தே தேடல் ஆரம்பித்திருக்க வேண்டும்.  சரி இவ்வளவு கூட யோசிக்கத் தேவையில்லை.   முன்னோர்களே அவ்வளவு அறிவாக இருந்திருக்கிறார்களே, நமக்கு எங்கே போச்சு புத்தி எனக் கேட்டால், தேசத்துரோகி ஆக்கிவிடுகிறார்கள்.

ஒரு எடுத்துக்காட்டு

அதுவும் தேசபக்தர்களுக்கான மதஞ்சார்ந்த எடுத்துக்காட்டு, இந்தியாவில், சில பகுதிகளில் சப்த கன்னியர்/அட்ட மாதர் வழிபாட்டில், விநாயகி எனும் தேவதையைச் சேர்ப்பதுண்டு, அதை யாரோவொருவர் இன்ச்டாகிராமில் போட்டிருந்தார், அதற்கு ஒருவர், அதெப்படி விநாயகரைப் பெண்ணாக வரைந்து அவமானப்படுத்தலாம் என சண்டைக்கு வந்துவிட்டார்.   வேறு சிலர் அவ்வழிபாட்டு முறையை எடுத்துக்கூற.. பின் பிரச்சினை ஒருவாறுத் தணிந்தது..  இப்படியிருக்கிறது எல்லாம்..!  சரி அப்படியே இருந்துவிட்டுப் போகட்டும்..

இரண்டு விசயங்கள்:

  • முதலில் நாம்/இந்தியப் பண்பாட்டினர் தான், வந்தது போனது என வரையறையின்றி கடவுளராக்கக்கூடிய வல்லமையுள்ளோர் எனக் கூறுகிறோமே, புதிதாக ஒரு கடவுளை ஏற்கமுடியாதா என்ன?!
  • இரண்டாவது, தெரியாத விசயம் என ஒன்று இருக்க வாய்ப்பு உண்டு என யோசிக்கக் கூட முடியாதா, முன்னோர்கள் இதற்கு ஏதாவது சொல்லியிருப்பார்கள் என்று விடவும் முடியவில்லை..  அது தான் முன்னோர்கள் முட்டாள்கள் இல்லையென நீங்களே சொல்கிறீர்களே.  நீங்கள் சொன்னதையே நீங்கள் வழமை போல் முரண்படுகிறீர்கள் தானே!

பௌத்தயானர் சூத்திரம் –  விவாதத் தெறிப்பு!

திரும்பவொரு மூத்தோர் சொல் முதுநெல்லிக்கனி விளையாட்டு.   பௌத்தயானர் சூத்திரத்தைப் பற்றி எனக்கும் பேராசிரியர்கள் செல்வக்குமாருக்கும், செயபாண்டியனுக்கும் நடந்த விவாதங்களை[2] இங்கேக் காணலாம்.

பல தமிழ் முகநூலர்கள், பௌத்தயானரின் சூத்திரத்தையும் (ஹோமக் குண்டங்களின் அளவைக் கணக்கிடப் பயன்பட்டவை), பிதாகரஸ் சூத்திரத்தையும் ஒப்பீடு செய்துப் பகிர்ந்து கொண்டிருந்தார்கள்.  அதாவது பிதாகரஸ் சூத்திரத்தின் பெயரை எப்படி பௌத்தயானர் சூத்திரம் என மாற்றலாம் என கொஞ்ச நாள் முன்னர் இந்தியர்களின் அல்லது தமிழர்களின்-பெருமை விளையாட்டை விளையாடிக் கொண்டிருந்தார்கள்!

நானும் சில விளையாட்டுக் கணக்குகளை, இது சம்பந்தமாகப் போட்டு வைத்து மறந்துவிட்டேன், எதையோ தேடும் போது சிக்கியது! இன்னும் அழகுறவும், கணித அழகு செழிக்கவும் செய்யலாம்! ஆனால், அதை எதையுஞ் செய்யாமல், ஒரு பாமரன் போல ஒரு படத்தை இங்கே இடுகிறேன்!

ஒரு செங்கோண முக்கோணத்தின் அடிப்பக்கம், எதிர்ப்பக்கம், கர்ணம் என்பவற்றை முறையே a, b, c எனக் குறிப்பிடுவோம்.   பிதாகரஸ் தேற்றத்தின் படி, அடிப்பக்கத்தின் (a) இருபடியின் அளவீட்டையும் எதிர்ப்பக்கத்தின் அளவின் (b) இருபடி அளவையையும் கூட்டினால் அம்முக்கோணத்தின் கர்ணத்தின் (H_P) இருபடி அளவைத் தரும்.

பிதாகரஸ் சூத்திரம் : a^2 + b^2 = H_{P}^2 அல்லது \sqrt{a^2 + b^2} = H_{P}

பௌத்தயானர் சூத்திரம்: \frac{a}{2}+\frac{7}{8}b = H_{B} \,\, ;  a < b

இதில் பௌத்தயானரின் சிறப்பு,  அதுவொரு நேரியல் சமன்பாடு ஆகும்.  படிகள் அல்லது மடிகள் இல்லை.  ஆனால் மிக முக்கியமான விசயம்.   எந்தப் பக்கம் சிறியதாக இருக்கின்றதோ அதை a எனக் குறிப்போம், மற்றப் பக்கத்தை b எனக் குறித்தால்,  கர்ணத்தின் அளவை (H_B) இவ்வாறுப் பெறலாம் என்கிறார், பௌத்தயானர்.

இரண்டு சூத்திரத்துக்கும் உள்ள கர்ண அளவின் சிறுபிள்ளைத்தனமான  வேறுபாட்டின் அளவை H_{P}-H_{B} வைத்து வரைந்ததே, இந்த வண்ணப்படம்.   அதாவது சிவப்பு நிறம் பித்தாகரஸ் மற்றும் பௌத்தயானர் கர்ண அளவுகள் ஒன்றாக உள்ளதற்கான குறியீடு அவ்வளவே!  பிழைகளைப் பொறுத்து சிவப்பில் இருந்து நீலத்தை நோக்கிச் செல்லும்!

Bodhiyanar_Pythogoras.png

H_{P} - H_{B} கிடைஅச்சு – முக்கோணத்தின் அடிப்பக்கம், நேரச்சு – முக்கோணத்தின் எதிர்ப்பக்கம்

கிடை-நேரச்சுகள் இரண்டும், 1 லிருந்து 100 வரை செல்கின்றன! அவை செங்கோண முக்கோணத்தின் அடி அல்லது எதிர்ப்பக்கம்/ குத்துக் கோடுகளின் அளவுகளைக் குறிக்கிறது!

அதுவொருப் பயன்பாட்டு அளவிலாத் தொடர்பாகத் தான் காண வேண்டும்! அப்படத்தினை அணி-போன்ற வரைபடமாகப் போட்டிருந்தால் இரண்டு சூத்திரங்களின் படி பெறப்பட்ட கர்ண அளவீடுகளும்  ஒரே அளவினதாக இருக்கலாம். ( அதாவது,  H_{P} =H_{B});  ஆனால், இரண்டு அளவைகளும் ஒரே அளவினதாக இருப்பது தற்செயல் என  கணித நக்கீரனாக நாம் இருந்தால்..

இதே இருபடி-ஒருபடி வாய்ப்பாடுகளை ஒப்பிடுவதன் விளைவாய், தோராயக்கணக்கே நன்றாக இருக்கும் என இப்படியே நிறுத்தியும் விட்டேன்!

ஹோமக் குண்டத்தினை வடிவமைக்க பௌத்தயானர் பாடிவைத்தது அப்பாடல், ஆதலால், எல்லா அளவுகளையும் கணக்கில் எடுக்காமல், சில அளவுகளை மட்டுமே அவர் கருத்தில் கொண்டிருக்க வேண்டும்; அது  வசதிக்கான சூத்திரமாக மட்டுமேப் பரிந்துரைத்திருக்கப்பட்டிருக்க வேண்டும்!

எப்பொழுது எல்லாம்,  பிதாகரஸின் முவ்வெண் கோவைகளாக  (Pythagorean triples) இருக்கிறதோ சிவப்புநிறத்திற்குள் (படத்தில்) அவை வந்துவிடும், ஆனால் சில பிழைகளும் H_{P} \approx H_{B} அச்சிவப்பில் அடக்கம்! சிவனையே சினந்த மக்களின் மயக்கத்திற்கு இதுவுமொருக் காரணம்!

ஆதிசங்கரரின் ஶ்ரீசக்கரம் வரைவதற்கான சூத்திரம் மாதிரிதான் இதுவும்!  ஏன் இப்படியெனக் கேட்டால் அழகியல் கெட்டுவிடும், வேறு ஏதோ தெரியாதப் பண்புகளும் கெடலாம்!   ஆயினும் எல்லோரும் சொல்கிறார்களே, அதில் எவ்வளவு ஒத்து வருகிறது எனப் பார்த்தேன்!

தவிர, சில ஒத்துவரவில்லையெனினும் மற்றவை ஒத்து வராது என நினைப்பது, கோடலின் முழுமையற்றத்தன்மையில் அடங்கிவிடும்/விடலாம்! 😀 எண்ணியல் என்பது மிகுந்த சலிப்பையும் ஆச்சரியத்தினையும் ஒரு சேர ஊட்டும் தன்மையுடையது! அது மாதிரி ஏதாவதுத் தெரிகிறதா எனத் தேடியதன் விளைவே இக்கணக்கீடு.

எனக்கு இவை எல்லாம் — ஆகம விதிகள், சட்டுவ அளவுகள், சக்கர அளவுகள், போன்றவை –பயன்பாட்டுக்கானவற்றை மட்டும் நாம் மிகப் பிடிவாதமாக/வசதிகளுக்காக, வைத்திருந்ததன் விளைவோ என்னவோ!

இவ்விவாதத்தின் விளைவாக, ஜெயபாண்டியன் அவர்கள், பௌத்தயானர் சூத்திரத்தைப் பற்றிய சிறுகுறிப்பொன்றை வரைந்திருந்தார்.  அதை இங்கேக் காணலாம் [3].

அது மட்டும் இல்லாது,  அறிவியல் எப்பொழுதும், எவ்வளவு குழப்பமான சமன்பாடுகளைக் கொண்டிருந்தாலும், symmetry -போன்ற பண்புகள் சீராய் அமைந்து, சமன்பாட்டை எளிதாக்கிவிடும், ஆச்சரியம் என்னவெனில் சில விசயங்களில், இயற்கையும் நாம் எழுதியது போலவே, சீராய் இயங்குவதும்!    அது போல் இருபடியாய் இருப்பதை ஒருபடியாய் மாற்றுவதும் பல வகைகளில் நல்லதாக சில உதாரணங்களின் வழிக் காணலாம்!

சார்பியற் குவாண்டவியலில் நேரியலாக்கம்

நேரியல் பண்புகளோடு இருப்பது, எப்பொழுதும் நல்லது தான்!  சட்டச்சார்பிலா குவாண்டவியலின்  (non-relativistic  quantum mechanics) சுரோடிங்கரின் (Schrödinger) இருபடி சமன்பாட்டின் ஒழுங்கற்றத் தன்மையை,

[-\frac{\hbar^2}{2m} \nabla^2 + (E-V)] \psi(x,t) = -i\hbar \frac{\partial\psi(x,t)}{\partial t}

டிராக் அவர்கள், சட்டச்சார்பு கொண்ட குவாண்டவியலுக்கான நேரியற்சமன்பாடாக அல்லது ஒருபடிச் சமன்பாடு ஆக்குவதன் மூலம் தீர்வை எளிதாக மாற்ற விழைந்தார்!  முதலில் சுரோடிங்கரின் சமன்பாட்டை சார்பியலோடுக் கலந்தால் அது,

(-c^2 \hbar^2 \nabla^2 +m^2 c^4) \psi(x,t) =(-i\hbar \frac{\partial \psi(x,t)}{\partial t})^2  (இருபடி)கிளெயின்-கோர்டான் சமன்பாடு (Klein-Gordon Eqn) என அமையும்.

பின்பு நேரியற் அணிக் கோட்பாட்டின் மூலம்,  (-i \hbar \partial^\mu \gamma_\mu -mc )\psi = 0 என டிராக் சமன்பாட்டை எழுதலாம்.

(Dirac Equation \partial^\mu, \gamma_\mu என்பன முறையே 4(பரிமாண)-செயலிகள்,  டிராக் \gamma அணிகள் )

சமன்பாடுகளின் நுட்பங்கள் தற்பொழுது தேவையில்லாதது.  ஆனால் அதன் படிகளைக் காண்க.  டிராக் சமன்பாடு வெறும் ஒருபடிச் சமன்பாடு..  (^\mu என்பது படியல்ல.. அது வெற்றுக் குறி (Einstein Summation index or dummy index)).  இச்சமன்பாட்டின் மூலம், குவாண்ட இயற்கணிதத்தின் அடிப்படைக்கல் நாட்டப்பட்டது.

இந்த சமன்பாட்டின் விளைவால், பாசிட்டிரான் எனும் எதிர்துகள் உதித்தது!  இது எதிர்மத்துகளின் அடிப்படையை விதைத்தது! பாசிட்டிரான்,  எலக்றானின் எதிர்மத்துகள்!  அதாவது பாசிட்டிரானின் சக்தி–எதிர்ம அளவில் இருந்தது Negative energy — இது அவருடையக் காலத்தில், இயற்கைக்குப் புறம்பானவொன்று!  ஆயினும் எண்ணியல் தொடர்புகள் பல,  இயற்கையில், பற்பல விளைவுகளில் இருப்பதைக் காண முடிந்ததைப் போல், போஸ்-ஐன்ஸ்டைன் குளிர்வித்தலில் எதிர்ம சக்தியின் நிரூபணத்தை ஆய்வின் வழிக் கண்டறிந்துள்ளனர்.   இங்கு பயன்பாடு — கோட்பாடாக்கப் பட்டுள்ளது!

பேராசிரியர் செல்வக்குமார் உட்பதி தொகை மின்சுற்றுக் கணக்கீடுகளில் இருபடிகள் இல்லாமலும், வர்க்கமூலம் இல்லாமலும் பயன்படுத்த வேண்டியதைக் குறிப்பிட்டிருந்தார் [4].   அந்தத் தளத்தில் பௌத்தயானரின் சூத்திரத்தையும் விவாதித்துள்ளனர்!

பழங்கால விற்பன்னர்கள்

பாரதத்தின் பண்பாடு மற்றும் தேடலின் சேகரங்களைக் கற்றலின் பொருட்டு பிறநாட்டினர் பயணக்குறிப்புகளில் பகிர்ந்துள்ளதாய் வரலாறு உள்ளன.  அக்குறிப்புகளில் பல, மந்திர தந்திர அல்லது அப்பொழுது இருந்த மாயவித்தைகள் என நிறைய விசயங்களை சந்தேகக்கண் கொண்டு நோக்கினாலும், தத்துவம் சார்ந்த அறிவுப் பரிமாற்றங்கள் வெவ்வேறு அளவுகளில் நடந்துள்ளது உண்மை.   நாம் எப்படி கணிதத்தையும் அறிவியலையும் மதம் சார்ந்த அல்லது சடங்குகள் சார்ந்த ஒரு விசயமாக உருவாக்கினோமோ, உலகின் பிற பகுதிகளிலும் அக்கால அறிவியல் அதே அளவில் நடந்தேறியதையும் அவ்வப்போதுக் காண முடிகிறது.

நான் இவற்றைப் பார்த்துப் பூரிப்பதோ தவிர்ப்பதோ இல்லை, முடிந்தால் உடனே என்னவென்று ஆய்வேன், அல்லது கிடப்பில் கிடக்கும்!  ஆயினும், ஒரு வேலையை, நாம் தற்போது செய்வது போல், பழங்காலத்து ஆட்களால் செய்ய முடியாது அல்லது வேறு மாதிரி செய்வார்கள், அதே போல் தான் நவீன அறிவியலைக் கொண்டு காணும் நமக்கும் பழங்காலத்து ஆட்களைப் போல் சிந்திக்க முடியாது, ஆயினும் அதே மாதிரியான சிந்தனையின் முக்கியத்துவம் பார்க்கப்பட வேண்டுமா என்பது சூழலையும் தேவையையும் பொறுத்தது.

வரலாற்று ஆய்வுகளின் முக்கியத்துவம்

ஆனால், பெரும்பாலானத் தருணங்களில்,  பிரச்சினை என்னவென்றால், அவல் தின்பது போல் வரலாற்றை மெல்லுவது தான்.  அறிவியல் மற்றும் கணித வரலாற்றைப் பற்றி தற்போது உள்ள விஞ்ஞானிகள் கண்டுகொள்வதில்லை எனப் பலர் கவலை கொண்டுள்ளனர்.

ஏற்கனவே, அறிவியல் ஆய்வுகளை, பண்டைய, புதிய என வரையறைகளில் பெரும்பாலும், மேற்கத்திய தத்துவங்களிலேயே வைத்துள்ளனர்.  ஆசிய தத்துவங்கள் அடர்வான சாரங்களைப் பெற்றிருந்தாலும், அவற்றை ஏற்றுக் கொள்வதில் மிகப் பெரிய சுணக்கம் உள்ளது.   நேர்மையாக முன்னெடுத்துச் செல்வோரின் அளவுக் குறைவாய் இருப்பதே இதற்கு காரணம்.  சனரஞ்சகமாகவே, அரிஸ்டாட்டில், சாக்ரடீஸ் தத்துவப்பள்ளிகளைப் பற்றி பெரும்பாலானோருக்குத் தெரியும், ஏன் அரிஸ்டாட்டிலுக்கும் முந்தைய பள்ளிகள் கூட சனரஞ்சகமாக அறியப்பட்டுள்ளன!  ஆனால், மாவீரர், பௌத்தர், பாணினி, தக்கசீலப் பல்கலையின் அருமையைப் பற்றி நம்மவர்களுக்கேப் பெரிதும் தெரிவதில்லை.    அப்படி அறியக் கொணர்ந்தாலும்,  இன்ன அளவு என்றில்லாமல் பெரும்புகழ்ச்சிக்கு ஆட்படுத்துவது.. இல்லை, அவை எல்லாம் மதம் சார்ந்தவை என மேம்போக்காகப் பேசுவது என அறவே சம்பந்தமில்லாத எதிரெதிர் இரட்டை நிலைகளுக்குள் சிக்கிக் கொள்வதாக இருப்பது.

பெருமைக்குட்படுத்துதலோடு ஆய்வுக்குட்படுத்துதலும்!

உதாரணத்திற்கு, பிரையான் ஜோசப்சன் எனப்படும் இயற்பியலர், தனது முனைவர் பட்ட ஆய்வின் போது, கண்டறிந்த மீக்கடத்தி சந்தி (Josephson Junction) என்பதைக் கண்டறிந்தார், அது மிகப் பெரியக் கண்டுபிடிப்பு, அவருடைய 25 வயதிலேயே அதற்காக நோபல் பரிசைப் பெற்றார்!  ஆயினும், தற்போது அவருடையக் கட்டுரைகள் பெரும்பாலும், மனதையும் பருப்பொருளையும் (mind-matter) சார்ந்து எழுதும் ஆய்வுக் கட்டுரைகளை, பெரும்பாலானோர் ஒத்துக் கொள்வதில்லை.  ஆர்கைவ் (arXiv) எனப்படும், ஆய்வுக்கட்டுரைகள் எளிதாக எல்லோரையும் சென்றடையச் செய்யும் வகையில் உருவாக்கப்பட்டத் தளம் கூட, அவருடைய சிலக் குறிப்பிட்ட ஆய்வுகளை ஒதுக்கி வைக்கின்றன!  இதில் மூன்று விசயங்களை உணர வேண்டும்!

  1.  அவர் நோபல் பரிசு பெற்றவர் என்பதாலேயே அவருடையவை எல்லா ஆய்வுகளும் ஏற்கப்படவில்லை யென்பது. (நாம் உயர்வு நவில்பவர்கள், ஆயிற்றா?!! )
  2. அப்படி ஒதுக்கி வைப்பது சரிதானா என்பதைப் பற்றியும் விவாதங்கள் நடந்த வண்ணம் உள்ளன.  அதாவது
    •  ஆய்வின் போக்கை, தாம் கொண்ட அறிவை மட்டும் வைத்து, இது சரி அல்லது தவறு என்று சொல்வது சரிதானா என்பது.  அதாவது ஆய்வின் சுதந்திரத்தை அது பறித்துவிடும்.
    • அதற்கான வடிகாலைக் கட்டமைப்பது. (உதாரணம் viXra, அதாவது arXiv-இன் தலைகீழ்! ஆனால் பல முரணானக் கட்டுரைகள் உள்ளன இதில்!)
  3.  இன்னும் ஜோசப்சன்னின் மற்ற ஆய்வுகள் சரியாக அலசப்பட்டு பிரசுரிக்கப்படவும் செய்கிறது.

 

சங்கப்பலகை அனல் புனல்வாதங்கள்!

ஒவ்வொரு கலாச்சாரமும் ஒவ்வொரு மனிதருக்கான வரையறையை வைக்கிறது.  ஆனால், நம்மவர்கள் பெரும்பாலும், அடுத்த நாட்டினரின் பண்பாட்டு உளவியலுக்குள் தத்தம் தலைகளைப் புகுத்த முயற்சிக்கிறார்கள், அதுவும் மிகவும் ஆகவே ஆகாத விசயங்களில்!   அனல்வாதம் புனல்வாதம் என்பது உவமைகளாக இருந்திருந்தால்,  சங்கப் பலகை-பொற்றாமரைக்குளம் என்பவை எல்லாம்  அக்காலத்தைய, editorial board-இன் ஒப்புமைவடிவம்!  வாதங்கள் எல்லாம் தத்துவங்களின் அலசல் –சமூகத்தால் ஏற்கப்பட்ட வடிவத்தைத் தரும் peer-reviewing system.    எல்லாத் தத்துவப் பின்னணி கொண்ட கலாச்சாரத்திலும், இது போன்ற தராசுகள் இருந்திருக்கின்றன.   சில நேரங்களில், வரலாற்றுப் படிமங்கள் கூறுவது போல், அவை கொஞ்சம் கொடுமையாக, யோசிப்போருக்கு நஞ்சையும் புகட்டியிருக்கின்றன, கழுவிலும் ஏற்றியிருக்கின்றன, கல்லைக்கட்டிக் கடலிலும் இறக்கியிருக்கின்றன.

அரைகுறை முன்னோர் புகழ்ச்சியால், உண்மையான வரலாற்றை நாம் தொலைத்துவிடக் கூடாது.  இது முதல் படி, ஆனால், இது மட்டும் போதாது, சரியான வரலாற்றைப் பதிவும் செய்ய வேண்டும். மகிழ்ச்சியான விசயம் என்னவென்றால், பல விஞ்ஞான நண்பர்கள் கிரேக்கத்துக்கும் முந்தைய அறிவியலில் ஆர்வங்கொள்வதும் நடுநிலையோடு இந்திய அறிவியல் வரலாற்றைப் பற்றி பகிர்வதும் ஆகும், ஆனால் மிகக் குறைவான பேர்களே இவ்வேலையை செய்து வருகின்றனர். என்பதும், அவர்களின் பகிர்வுகள் எவ்வளவு சனரஞ்சகமாக எடுக்கப்படுகிறது என்பதைக் காணும் போது அது வருத்தத்திற்குரிய அளவிலேயே உள்ளது.

ஆனால் அறிவியலுக்கும் கட்டுக்கதைப் புனைந்து புல்லுருவியைப் போல் செய்திகளைப் பரப்பி உளுக்கச் செய்தல், கடைந்தெடுத்த முட்டாள்தனம்.

உசாவுத்துணைகள்:

[1] https://archive.org/details/balagzone_gmail

[2] https://www.facebook.com/photo.php?fbid=10207381186028991&set=rpd.1266837112&type=3&theater

[3] https://drive.google.com/file/d/0BzwpbxABzaV5V0lxS0dZeTFhOGM

[4] http://forums.parallax.com/discussion/147522/dog-leg-hypotenuse-approximation

[5] முடிவிலா மின் சுற்றும், கொஞ்சம் ஜனரஞ்சக திண்ம அறிவியலும்!

 

பஞ்சரத்தினத்தின் வடிவக்கட்டம் – Panchanratnam’s geometric phase

   பஞ்சரத்தினம் யார்?

Panch

படம்: (Courtesy: Resonance, (April 2013)) புகழ்பெற்ற சகோதர இயற்பியலாளர்கள்: பஞ்சரத்தினம், அவரின் அண்ணன் இராமசேஷன் (படிகவியல், பொருண்ம அறிவியல்) மற்றும் ஒன்றுவிட்ட சகோதரர் சந்திரசேகர் (நீர்மப் படிகவியல்)

சிவராஜ் பஞ்சரத்தினம், 1934 ஆம் ஆண்டு கல்கத்தாவில் பிறந்த ஒரு இயற்பியலாளர் ஆவார், அடிப்படையில் தமிழ் குடும்பமான அவர்கள், பஞ்சரத்தினத்தின் தந்தையின் வேலை நிமித்தம் வங்காளத்தில் வாழ்ந்தனர்.  இவர் சர் சி. வி. இராமனின் தங்கையின் மகனும் ஆவார்.  மிகச்சிறிய வயதில் சில ஒளியியற் சோதனைகளைச் செய்து அதில் மிக முக்கியமான விளைவுகளைக் கண்டறிந்தவர்.  இவரின் தொடக்க கால ஆய்வுகள் இராமனின் மேற்பார்வையிலேயே நடந்தன. பெரிதாக அறியப்படாத இந்திய அறிவியலாளர்களில் இவரும் ஒருவர்.

சர். சி. வி. இராமன் பஞ்சரத்தினத்தின் திறனை நன்கு உணர்ந்திருந்தார், அவர் ஜவஹர்லால் நேருவிடம் ஒரு முறை பஞ்சரத்தினத்தைச் சுட்டிக்காட்டி, அந்த இளைஞன் இந்தியாவிற்கு மற்றுமொரு நோபல் பரிசைக் கொணர்வான் எனக் கூறினாராம்.  இப்படித் திறமையுடன் வலம் வந்தவர், ஆக்ஸ்போர்டு பல்கலைக்கழகத்தில் ஆய்வு செய்ய சென்று இருந்த போது, தனது 35-வது வயதில், 1969 ல் நோய்வாய்ப்பட்டு  இறந்தார்.  எனினும் அவர் தன் குறுகிய வாழ்நாளில் கண்டுபிடித்தவை, இயற்பியலிலும், கணினித் துறையிலும் மிக முக்கியமானதாகக் கருதப்படுகிறது.

அவரால், 1950வாக்கில் கண்டறியப்பட்டவை, அக்காலத்தில் சிலத் தாக்கங்களை உண்டுபண்ணியிருந்தாலும், 1984 ஆம் ஆண்டு மைக்கேல் பெரி (Michael V Berry) என்பாரால் கண்டறியப்பட்ட பெரியின் வடிவியற்கட்டம் (Berry’s geometric phase) வந்தப் பின்னரே, பரந்த இயற்பியல் ஆய்வுலகத்துக்கு பஞ்சரத்தினத்தின் ஆய்வினை, இராமன் ஆய்வுக்கழகத்தைச் சார்ந்த பேராசிரியர் இராஜாராம் நித்யானந்தாவும், இந்திய அறிவியற்கழகப் பேராசிரியரும் பஞ்சரத்தினத்தின் அண்ணனுமான, இராமசேஷனும் அறியச் செய்தனர்.  ஏறத்தாழ 60 வருடங்கள் ஆன நிலையில், அப்பொழுதுக் கண்டறியப்பட்ட விசயம் எப்படி நவீனக் கணினி மற்றும் தொடர்பியல் கோட்பாட்டை மாற்றி அமைக்க எத்தனிக்கிறது என்பதைச் சுருக்கமாகக் காண்போம்.

தளவிளைவும் படிகவியலும்

ஒளியானது, பொதுவாக மின்காந்தப் புலங்களைக் கொண்ட அலைகளால் ஆனது, அலைகள் எனக் கூறும் பொழுது, அவை மாறும் தன்மை கொண்டவையென நம்மால் உணரமுடிகிறது,  அவ்வாறு ஏற்படும் மாற்றமானது, நொடிக்கு ஏறத்தாழ 10^15  முறை அலைவுறும்.  அவை குறுக்கலைகளாகப் பரவும்,  அதாவது, ஒளி பரவும் திசைக்கு செங்குத்தாக புலங்களின் அதிர்வுகள் இருக்கும்.  அவ்வாறு பரவும் போது, பற்பல கோணங்களில் ஒளிப் பயணிக்கும் திசைக்கு செங்குத்தாக மின்புலத்தின் அதிர்வுகளும் இருக்கும்!  எடுத்துக்காட்டாக, இயற்கையில் கிடைக்கும் சூரிய ஒளியானது, பல தளங்களில் அதிர்வுறும் ஒளியாகும்.  இவ்வாறான தளவிளைவுறா ஒளியை, ஒரு தளத்தில் மட்டும் அதிர்வுறச் செய்யும் போது, நமக்கு தளவிளைவுக்கு உட்படுத்தப்பட்ட ஒளியாகக் கிடைக்கும்.

ஒளிப் பரவும் முறை, E என்பது மின் புலம், B என்பது காந்தப் புலம்.

ஒளிப் பரவும் முறை, E என்பது மின் புலம், B என்பது காந்தப் புலம்.

மேலும் ஒளிப் புகுந்து வரும் ஊடகத்தைப் பொறுத்து, வட்டவடிவமும் நீள்வட்டவடிவத் தளவிளைவாக்கமும் கொணரலாம்.  அவை, அவ்வூடகத்தின் ஒளியியல் பண்புகளைப் பொறுத்து அமைவன.   இரட்டை ஒளிவிலகல் திறன் (birefringence) கொண்டப் படிகம் ஒன்றின் வழியாக, தளவிளைவுறா ஒளியை அனுப்பும் பொழுது, இரண்டாகப் பிரிக்கப்படுகிறது, படிகத்திலிருந்து வெளிவரும் ஒளிக்கதிர்களில், ஒன்று  படிகத்தைச் சுழற்றினாலும் ஒளி வரும் திசையிலேயே இருக்கும், மற்றொருக் கதிரானது, படிகத்தைச் சுழற்றும் பொழுது, வெளிவரும் ஒளிக்கதிரின் திசையும் மாறி படிகத்துடன் சேர்ந்து சுழலும்.   இதற்குக் காரணம், படிகத்தில் விழும் ஒளியானது, பல்வேறு நிலைகளில் படிகத்தில் விலக்கப்பட்டு, வெவ்வேறு திசையில் பயணிக்கும், அவ்வாறு செல்லும் பொழுது, படிகத்தின் அணுக்களின் அமைப்புக்கு ஏற்ப, வெவ்வேறு திசையில்  வெவ்வேறு திசைவேகத்தில் செல்லும், இதனால், இம்மாதிரியான இரட்டை ஒளிவிலகல் உண்டாகிறது,

மேலும், இவ்வாறு ஒளிக் கதிர் படிக மூலக்கூறுகளோடு ஊடாடும் பொழுது, தளவிளைவை அக்கதிர்களில் உண்டாக்குகிறது. இவ்வாறு வரும் கதிர்கள், டூர்மலைன் போன்றப் படிகங்களில், வெவ்வேறு தளவிளைவாக்கிய ஒளிக்கற்றைகளாகவும் வெளியேறும்.

    தொலைக்காட்சியின் அலைவாங்கி உதாரணம்

தளவிளைவாக்கப்பட்ட அலைகளின் பண்புகளை, 1980, 1990களில் தொலைக்காட்சிகளுடன் இணைக்கப்பட்ட,  ஈய அலைவாங்கிகளைக் (Antenna) நாம் பயன்படுத்தியவிதத்தில் இருந்துப் புரிந்து கொள்ளலாம். தொலைக்காட்சி நிகழ்வுகள் பண்பலையாக்கப்பட்டு, மின்காந்த அலைகளாக அனுப்பப்படும் பொழுது, தளவிளைவாக்கப்பட்டே அனுப்பப்பட்டன, அந்த அலைகளை, அதே தளத்தில் உள்ள, சரியான கோணத்திலுள்ள அலைவாங்கிகளாலேயே எடுக்கப்பட்டு, தொலைக்காட்சிப் பெட்டியில் தெளிவாகத் தெரியும், ஆனால், அலைவாங்கியின் தளம் சிறிது மாறியிருந்தாலும், நிகழ்ச்சித் தெளிவாகத் தெரிவதில்லை.  ஆகவே, நாம் கூரையின் மேலுள்ள அலைவாங்கியின் கோணத்தை சிறிது மாற்றினாலும் கூட, காட்சியின் தரம் மாறுபடுவதைக் கண்டிருப்போம்.

அதன் அடிப்படைக் காரணம்,  அலைவாங்கியின் கோணத்தில் ஏற்பட்ட சிறு மாற்றத்தினால், அலைகள் முழுமையாக உள்வாங்கப்படாமல் போவதே!  அப்படியானால், அலை அனுப்பப்படுவதும், உள்வாங்கப்படுவதும் அதேத் தளத்தில் இருந்தால் மட்டுமே, அலைமாறுபாடு ஏற்படாமல் தெளிவாக இருக்கும்.  ஆனால், கொஞ்சமும் சம்பந்தமே இல்லாத இரு வேறு தளங்களில்  அனுப்பபடுவதும் வாங்கப்படுவதும் நடந்தால், எப்படியிருக்கும் எனவும் யோசிப்போம்!  இதுத் தொலைக்காட்சிப் பெட்டியில் ஒன்றுமேத் தெரியாததற்கு சமம்.

அதே சமயம் இரு வேறு தளங்களில் உள்ள அலைகள், ஒன்றையொன்று ஊடாடி குறுக்கீட்டு விளைவை உண்டு பண்ணுவது என்பதும், சற்றும் பொருந்தாத விடயம்.  ஆனால் எவ்வளவு பொருந்தாது என்பதைக் கண்டறிய, பஞ்சரத்தினம், விழைந்தார்.  இதையே, வெவ்வேறு தளவிளைவுற்ற ஒளிக்கதிர்களில் ஒன்றையொன்று மோதச் செய்யும் பொழுது, குறுக்கீட்டு விளைவை ஏற்படுத்தினால் என்ன நடக்கும் என பஞ்சரத்தினம் ஆய்வு செய்தார்.

இதே மாதிரியான வானிலுள்ள, பல்சார் (pulsar) போன்ற தொலைதூர வான்மீன்களிலிருந்து வரும் மின்காந்த அலைகளை வாங்கும் அலைவாங்கிகளின் தளங்களைக் கொண்டு ஆய்வுகளை, சர் சி.வி. இராமனின் புதல்வர், வானியற்பியலாளரான பேராசிரியர் இராதாகிருஷ்ணன் அவர்கள் செய்தார்.

ஒளியியலும் கோள முக்கோணவியலும்

உதாரணத்துக்கு, ஒரு நேரான ஒரு சமதளத்தில் உள்ள முக்கோணம் அல்லது சதுரத்துக்கும், அதுவே ஒரு கோளத்தின் மேல் உள்ள முக்கோணம் அல்லது சதுரத்துக்கும் வித்தியாசம் உள்ளதல்லவா.

பூமியில் ஓரிடத்தில் இருந்து, 500 கிமீ வடக்கு நோக்கிப் போய், அங்கிருந்து இடப்பக்கம் திரும்பி மேற்கு நோக்கிக் கிளம்பி 500 கிமீ போய் மறுபடியும் இடப்பக்கம் திரும்பி 500 கிமீ வந்து, அடுத்தும் 500 கிமீ இடப்பக்கம் திரும்பி வந்தால், நாம் ஆரம்பித்த இடத்திற்கே வந்து விடுவோமா??

இதுவே ஒரு சமதளத்தில் நடக்கும்.  ஆனால், பூமியானது கோளவடிவில் ஆனது, ஆகையால், வளைபரப்பின் காரணமாக, தொடர்ந்த இடத்துக்கு வர இன்னும் கொஞ்ச தூரம் பயணிக்கவோ, அல்லது 500 கிமீக்குள் கடந்து விட்டிருக்கவோ வேண்டும்.

அது சரி, ஏன் திடீரென தளவிளைவில் கோளங்களின் அளவைகள்?  ஒரு முப்பரிமாண அல்லது அதிகப்படியான பரிமாணங்கள் உள்ளப் பொருட்களை, எப்படி இரு பரிமாணத் தாளில் வரைகிறோமோ, அதே போல், வெவ்வேறு வகையான தள அதிர்வுகளை, அதன் அதிர்வுகளின் தன்மையான, எந்தத் தளத்தில் அதிர்வுறுகின்றன என்பதைக் கொண்டும், எவ்வளவு செறிவுடன் அதிர்வுறுகின்றன என்பதையும் தாங்கும் சேதிகளை, முப்பரிமாணக் கோளத்தில், பொதியச் செய்யலாம், அவை நம் வசதிக்கேற்பக் குறிப்பதற்கும் கணக்கிடுவதற்கும் பயன்படும் முறையை பிரெஞ்சு இயற்பியலரும் கணிதவியலருமான போன்கெரெ (Henri Poincare) அறிமுகப்படுத்தினார்.  ஆகையால் அவர் பெயரால், பொன்கெரெ கோளம் என இது அழைக்கப்படுகிறது.

(Poincaré sphere ) போன்கெரெ கோளம். கோளத்தில் உள்ளப் புள்ளிகளின் தளவிளைவின் தன்மைகள்.

(Poincaré sphere ) போன்கெரெ கோளம். கோளத்தில் உள்ளப் புள்ளிகளின் தளவிளைவின் தன்மைகள்.

கோளத்தின் நடுப்புள்ளியை, தளவிளைவுறா ஒளியென்றும், கோளத்தின் மேலுள்ளப் புள்ளிகளை தளவிளைவுற்றது என்றும் கூறுவார்கள், அக்கோளத்தின் கோள நடுக்கோட்டில், செங்குத்தாக மற்றும் கிடைமட்டமானத் தளவிளைவைக் குறிக்கும் ஒளியினைக் குறிப்பிடவும், வட, தென் துருவப் புள்ளிகளில் உள்ளவற்றை (வலச் சுற்று, இடச்சுற்று) வட்ட வடிவில் தளவிளைவுற்றது எனவும், ஏனையவை நீள்வட்டத் தளவிளைவுற்ற ஒளியைக் குறிப்பதாகவும் கொள்வோம்.

சமதள முக்கோணத்திற்கும் கோளத்தில் அமைந்த முக்கோணத்திற்கும் வேறுபாடு காணுங்கால், ஏற்படும் சிறிய பரப்பு வேறுபாடு பஞ்சரத்தினத்தின் வடிவக் கட்டம் உருவாவதற்கு வழிகோலியது.  ஆனால் எவ்வாறு?

வீட்டில் செய்ய இயலும் சில சோதனைகள்:

தளவிளைவாக்கும் படிகங்களைக் கொண்டோ. தளவிளைவாக்கும் ஒளித் தகடுகளைக் கொண்டோ தளவிளைவாக்கலாம்.  உதாரணத்துக்கு,  நீர்மப் படிகத் திரைகள்  (Liquid Crystal Displays) தளவிளைவாக்கிய ஒளியை உமிழும் தன்மையுடையவை.  தளவிளைவாக்கும் கண்ணாடிகளைப் (Polarized glass) போட்டுக் கொண்டு, நீர்மப் படிகத் திரைகளைப் பார்க்கும் போது, சில கோணங்களில் திரையின் ஒளியின் அளவு அதிகமாகவும், அதையே தலையை சாய்த்துக் காணும் பொழுது,வேறு கோணங்களில் இருளாகவோ அல்லது ஒளியின் செறிவுக்  குறைந்தோ  இருப்பதைக் காணலாம்.

கீழ்க்காணும் படங்களில் அந்த மாதிரியான சோதனைகள் செய்து காண்பிக்கப்பட்டுள்ளன.
கணினியின் நீர்மப்படிக ஒளித்திரையில் இருந்து வரும் தளவிளைவுற்ற் ஒளி, ஆடியின் வழியாக வரும் பொழுது, வெவ்வேறு கோணங்களில் எப்படி அந்த ஒளிப் பாதிப்படைகிறது என்பதைக் காணலாம்.

தளவிளைவுற்ற ஒளி போலரைசர் கண்ணாடி வழியாகப் பார்க்கும் பொழுது.

தளவிளைவுற்ற ஒளி போலரைசர் கண்ணாடி வழியாகப் பார்க்கும் பொழுது.

ஏறத்தாழ செங்குத்தாக ஆடியினைத் திருப்பியதற்கப்புறம் ஒளித் தடைபட்டுள்ளதைக் காண்க.

ஏறத்தாழ செங்குத்தாக ஆடியினைத் திருப்பியதற்கப்புறம் ஒளித் தடைபட்டுள்ளதைக் காண்க.

சோதனையினூடே, செலோஃபேன் டேப் எனப்படும் வெளிர் ஒட்டு இழையை இரு மடிப்பாக மடித்து வைக்கும் பொழுது, மேலுள்ளப் படத்தில் மறைக்கப்பட்ட எழுத்துகள் தெரிவதைக் காணலாம், ஏனெனில் ஒட்டு இழை, கணினியில் இருந்து வரும் தளவிளைவாக்கிய ஒளியின் தளத்தினை மாற்றியமைத்துள்ளதைக் காணலாம்,  இழை வழி வரும் எழுத்துகள் தெளிவாக இருப்பதையும் ஏனைய எழுத்துகள் மறைந்துள்ளதையும் காணலாம்.

தடைபட்ட ஒளி செலோஃபென் இழையினால் தெரிய ஆரம்பிக்கிறது.

தடைபட்ட ஒளி செலோஃபென் இழையினால் தெரிய ஆரம்பிக்கிறது.

பற்பல அடுக்குகளினால் ஆன இழைகளைக் கோர்த்து வைக்கும் பொழுது, சீரிலா ஒளிச்சிதறல் இழையில் உள்ளக் கோந்தினாலும், இழையின் மூலக்கூறுவடிவத்தினாலும் ஏற்படுவதால், நிறப்பிரிகை ஏற்படுவதைக் காண்க.

IMAG0717 IMAG0721

 நம் சோதனை -ஓர் குவாண்டக் கனி!!

நம்முடைய சோதனையும் கூட, பஞ்சரத்தினம் மற்றும் பெரி அவர்கள் சொன்னது போன்றதன், சிறு பிள்ளைகளின் விளையாட்டுப் போன்றதன் ஒரு சோதனைவடிவமே, ஆயினும் சிறப்பாக ஒரு இயற்பியல் சோதனை நடந்திருக்கிறது!

நம் 500 கிமீ பயண எடுத்துக்காட்டில், குறைந்தது, ஓரிடத்தில் ஆரம்பித்து, 3 இடங்களைக் கடந்து, ஆரம்பித்த இடத்துக்கு வருவதைப் பார்த்தோம் அல்லவா, அதே போல், நாம் தளவிளைவான மூன்று ஒளிக்கதிர்களை (ஒ1, ஒ2, ஒ3) வெவ்வேறு தளவிளைவாக்கியைக் கொண்டு உருவாக்கவேண்டியது, பின் இவற்றை ஒன்றன்மீது ஒன்றாகப் (ஒ1 மீது ஒ2, ஒ2 மீது ஒ3, ஒ3 மீது ஒ1) பாய்ச்சும் பொழுது, அலைப் பண்பால், இந்த மூன்றுக் கதிர்களும், அவ்வவற்றின் அகடு முகடுகள் கூடுவதால், வெளிச்சம் மற்றும் இருட்கோடுகளை உருவாக்கும், ஒளிக்கதிர்கள் வெவ்வேறுக் கட்டங்களில் கூடுவதால் உண்டாவது இது.  ஆயினும்,  இந்தக் கதிர்களின் அதிர்வுகள், வெவ்வேறு தளங்களில் இருந்தால், அகடு முகடுகள் கூடாமல், அப்படியே இருக்கவேண்டும்,ஆயினும் குறுக்கீட்டு விளைவை உண்டு பண்ணுகின்றன.

நம் சோதனையை போன்கெரே கோளத்தில் எப்படி அமைகிறது எனக் காண்கிறோம்!

நம் சோதனை போன்கெரே கோளத்தில் எப்படி அமைகிறது எனக் காண்கிறோம்!

ஒ1 எனப்படுவதைக் கணினியில் இருந்து வரும் ஒளியாகவும் கண்ணாடி ஒட்டு இழையில் பட்டு வரும் ஒளியை ஒ2 ஆகவும், போலரைஸ்டு கண்ணாடியில் இருந்து ஒளியை ஒ3 எனவும் கொள்வோம்.  ஒ3 பகுப்பானாய் உள்ள போது ஒ1 எனப்படும் கணினி ஒளியைத் தடுத்து மறைக்கிறது. அப்படியெனில் ஒ1 கணினி ஒளியின் தளமும் கண்ணாடியின் தளமும் நேர்எதிர் ஆனவை.  ஆனால், ஒட்டு இழை வழியாக வரும் பொழுது, கணினி ஒளியின் தளம் மாற்றப்பட்டுக்  கண்ணாடி வழியாகத் தெரியச் செய்கிறது.

இம்மூன்று ஒளிக்கற்றைகளையும்  வெவ்வேறுப் புள்ளிகளில், அந்தந்த ஒளியின் தளங்களைப் பொறுத்து, போன்கெரெ கோளத்தில் குறிப்பிடலாம் அல்லவா, அவற்றை இணைக்கும் பொழுது, கோளத்தில் முக்கோணம் உருவாவதைக் காணலாம், அந்தக் கோளப் பரப்பு வேறுபாடானது, கணக்கிடும் பொழுது அந்த ஒளி-இருள் பட்டைகளின் காரணமாவதுத் தெரிந்தது.  இந்த பரப்பு வேறுபாடு, கோளத்தில் மையப்புள்ளியில் இருந்து  இப்புள்ளிகளால் உருவானத் திண்மம் (ஆப்பு தனைப் போன்ற ஒரு வடிவம்) உண்டாக்கும் கோணத்தின் நேர் விகிதத்தில் இருப்பதையும் உணர முடிந்தது.

கணினி, இழை, கண்ணாடி ஆகியனவற்றின் தளங்களை சரியாகக் கணிக்கும் பட்சத்தில் பஞ்சரத்தினத்தின் வடிவக்கட்டத்தைக் கணக்கிடலாம்.  இதில் கடைசியாக நாம் காணும் ஒளி, பஞ்சரத்தினத்தின் வடிவக்கட்டத்தைத் தாங்கியே வருகிறது!   இதை இன்னும் சனரஞ்சகமாகக் கூறினால், குவாண்டக் கணினிக்குத் தேவையான ஒரு முக்கியமானக் கருவியை நாம் இலகுவாக செய்திருக்கிறோம்!

நவீன பயன்பாடு

இதை பஞ்சரத்தினம் அவர்கள் கண்டறிந்து, பற்பல வருடங்கள் கழித்து, குவாண்ட இயற்பியலில் ஒரு குவாண்டத்துகளின் சுழற்சிப் (spin) பண்பானது, இதே “மாதிரியான” கட்ட வேறுபாட்டினைத் தாங்கி வந்ததை மைக்கேல் பெரி அவர்கள் கண்டறிந்து பிரசுரித்தார், அதைத் தொடர்ந்து,  பஞ்சரத்தினத்தின் ஆய்வுகள், பேராசிரியர்கள் இராமசேஷன், இராஜாராம் நித்யானந்தா மூலம் தக்க சமயத்தில் வெளிக்கொணரப்பட்டது.

பின்பு இந்திய அறிவியற்கழக, இராமன் ஆய்வுக்கழக மற்றும் கணித அறிவியற்கழகப் பேராசிரியர்களான முகுந்தா, ஜோசப் சாமுவேல், இராஜேந்திர பண்டாரி,  சைமன் ஆகியோரால் பஞ்சரத்தினத்தின் மற்றும் பெரியின் வடிவியற்கட்டம் அமையும் விதங்களை, குவாண்ட புலங்களிலும், இயக்கவியலிலும்,  குவாண்ட ஒளியியலைக் குலங்கள் வழிக் காண்பதிலும் (Group theoretical approach to quantum optics) என வெவ்வேறு அமைவுகளில் கண்டறிந்தனர்.

இப்படி வெவ்வேறு அளவுகளில் நடந்த கோட்பாட்டுரீதியான, அதே அளவில் சோதனை அடிப்படையிலான ஆய்வுகளின் விளைவு, வடிவக் கட்டங்களின் பயன்பாடும் அதன் மூலமும் ஆழ்ந்த தத்துவார்த்த இயற்பியலில் முக்கியமான விசயங்களை உணர்த்துவதோடு,  நவீன அறிவியலின் பரிணாமத்தால், பயன்பாட்டு அளவிலும் பயன்படுத்த முடியும் என ஆய்வு செய்கின்றனர்.

தற்காலத்தில், குவாண்டக் கணினிகளை, குவாண்டச் சுற்றுகளால் (circuits) வடிவமைக்கும் பொழுது, இதே மாதிரியான தளவிளைவாக்கிகளின் அடிப்படையைக் கொண்டு செய்ய முடியும், ஆனால், குவாண்டக் கணிணிகள், பெரும்பாலும், குவாண்ட ஒளியின் பண்புகள், அணுக்கரு, அணு, எதிர்மின் துகள்கள், அல்லது நியூட்ரினோ போன்ற மீச்சிறுதுகள்களாலும் உருவாக்கப் பரிந்துரைகள் செய்யப்படுகிறது.   இவை எல்லாம், சூழலின் வெப்பம், மற்றும் வெவ்வேறு வகையான இயற்கை காரணிகளால் மிக எளிதாகப் பாதிக்கப்படும், இதனால், குவாண்ட கணினியில் உள்ள விவரங்கள், மிகச் சிறிய நேரத்திற்கு மட்டுமே சேமித்து வைக்கப்பட முடியும்.

அந்த மீச்சிறு நேரத்திலும், இன்னபிற வேண்டாத விளைவுகளை உண்டு பண்ணும் குவாண்ட செயல்பாடுகளால், கணக்கீட்டில் தவறுகள் நேரலாம்.  அந்த செயல்பாடுகளை, பஞ்சரத்தின வடிவக்கட்டத்தைக் கொண்டு உருவாக்கும் செயலிகளைக் கொண்டு தவறு நேராமல் செய்யலாம்.  நாம் ஏற்கனவேப் பார்த்ததில் பான்கெரெ கோளத்தில் உண்டாகும் திண்மத்தின் கன அளவானது, ஆற்றல் மாறாவிதி போன்ற அடிப்படை விசயங்களால்,பாதுகாக்கப்படுவதால், பிழைகள் நேருவதுத் தடுக்கபடுவதாக கருதுகோள் கோரப்படுகிறது.  முன்காலங்கள் போல் இல்லாமல், தற்பொழுது வளர்ந்து வரும் பொருண்மை அறிவியலின் (Material science) வளர்ச்சியில், இம்மாதிரியானக் குவாண்ட செய்தி பரிமாற்றத்துக்கும் கணக்கீட்டுக்கும் தேவையானப் பொருண்மங்களை உருவாக்கிக் கொண்டே வருகிறார்கள்.  இதனால், பஞ்சரத்தினத்தின் வடிவியற்கட்டம் சார்ந்த விசயங்களை வரும் வருடங்களில் குவாண்ட கணினிகளிலும் பயன்படுத்தலாம்.

பஞ்சரத்தினத்தைத் தொடர்ந்து பெரி வடிவக் கட்டமும்,  அதைத் தொடர்ந்து அஹரனோவ் – ஜீவா ஆனந்தன் (இலங்கை தமிழ் இயற்பியலாளர்) வடிவக் கட்டமும், தவிர,  இடவியல் கோட்பாட்டின் பலக் கூறுகளை இயற்பியலின் கட்டுமானத்தைக் கொண்டுத் தெளிவுறுத்தவும் இக்கோட்பாடுகள் உதவிகரமாய் உள்ளன.

60 வருடங்கள் கழித்து, மீண்டும் பஞ்சரத்தினத்தின் ஆய்வு மிகப் பெரியத் தாக்கத்தினை செய்து கொண்டிருக்கிறது.   மிகக் குறுகியக் காலமே (35 வயது) வாழ்ந்து மறைந்த பஞ்சரத்தினம் அறிவியற் துறையில் மட்டுமல்லாது, மிக விரிவான சமுதாயப் பார்வையும் சமூக மேம்பாடு குறித்தத் தெளிவினையும் கொண்டிருந்ததோடு மட்டுமல்லாமல், அதற்கான வேலைகளில் ஈடுபட்டதால் உண்டான நோய்த் தொற்று, அவரின் இளமைக் கால இறப்புக்குக் காரணமானது.

ஆயினும் ஶ்ரீனிவாச இராமானுஜன், இராமன் போன்றோரின் ஆய்வின் தாக்கம் போல் பஞ்சரத்தினத்தின் தாக்கமும் இயற்பியலில் இன்றளவிலும் அளப்பரியதாக உள்ளதைக் காண முடிகிறது.

உசாவி

அறிவியல்சார்/சாராக் கட்டுரைகள்:

[1]   Rajaram Nityananda, Resonance, Vol. 18, Issue 4. page. 301 — 305 (2013)
S Pancharatnam (1934–1969): Three Phases
Kausalya Ramaseshan, ibid.
NV Madhusudana, ibid.
GW Series, ibid.

http://www.ias.ac.in/resonance/Volumes/18/04/0301-0305.pdf

[2] Current science special issue on Pancharatnam, Vol.67, Issue. 4 (1994)

அறிவியற்கட்டுரைகள்

[3] S. PANCHARATNAM, Proc. Indian Acad. Sci. 45, 402 (n.d.).

[4] S. PANCHARATNAM, Proc. Indian Natl. Sci. Acad., A 44, 247 (1956).

[5] S. PANCHARATNAM, Proc. Indian Natl. Sci. Acad., A 46, 1 (1957).

[6] S. PANCHARATNAM, Proc. Indian Natl. Sci. Acad., A 44, 398 (1956).

[7] M. V. Berry, Proc. R. Soc. London. A. Math. Phys. Sci. 392, 45 (1984).