எ.ச. ஜார்ஜ் சுதர்சன்

எ. ச. ஜார்ஜ் சுதர்சன் சகக்காலத்தில் வாழ்ந்த மிகமுக்கியமான இந்திய இயற்பியலர். என்னை மிகவும் ஆழ்ந்துபாதித்த இயற்பியலர்களுள் இவரும் முக்கியமானவர். இன்று அவர் இறைத்திருவடிகளுடன் கலந்துவிட்டார்.

அவருடைய ஆய்வுப் பரம்பரையில் நேரடியாக வந்தவனாக என்னைக் கொள்ளவியலாது, ஆயினும் நான் சிறிதுகாலம் இணைந்து வேலைசெய்த இந்திய வானியற்பியற்கழகத்தின் பேராசிரியர் சிவராம் அவர்களின் ஆசிரியர் சுதர்சன் அவர்கள்.

(நோபல் பரிசு வழங்கப்பெற்ற) வலுவிலா இடைவினை/weak interaction, குவாண்டம் சீனோ விளைவு/Zeno effect, நோபல் பரிசு வழங்கப்பெற்ற சுதர்சன்-க்ளௌபர்/Sudarshan-Glauber representation குவாண்ட ஒளியியல் வழிமுறை, டாக்கியான்/tachyon எனப்படும் ஒளியினும் அதிதிசைவேகத்துகள், குவாண்ட நேரியல், ஆற்றல் தேய்வியல்/decoherence, dissipation போன்ற புலங்களில் ஆய்வை மேற்கொண்டும், மேற்குறிப்பிட்டப் பலமுறைகளையும் புதிதாக இயற்பியலில் கண்டறிந்தும் தந்தவர்.

இவரின் கண்டுபிடிப்புகளுக்காக ஒன்பதுமுறை நோபல் பரிசுக்காகப் பரிந்துரைக்கப்பெற்றவர் எனக்கூறப்படுகிறது. ஆயினும் ஒருமுறைகூட வழங்கப்படவில்லை. கடைசியாக 2005ஆம் வருடம்- சுதர்சன் -க்ளௌபர் வழிமுறைக்காக, க்ளௌபருக்கு நோபல் பரிசு வழங்கிவிட்டு, இவரை விட்டதையடுத்து, இவரே நோபல் குழுமத்துக்கு மடலெழுதி தன் கவலையை வெளிப்படுத்தியிருந்தார்.

வேத, வேதாந்தங்கள் போன்ற இந்தியத் தத்துவங்களில் மிகவும் ஆழ்ந்து இயற்பியலை/உண்மையைத்தேடியவர். உலகளாவிய ஆய்வில் புகழ்மிக்கவராய்த் திகழ்ந்த அதேநேரம், இந்திய இயற்பியல் ஆய்விலும், தத்துவார்த்தத் தேடலுக்கும் மிகுந்தப் பங்கினை ஆற்றியவர்.

Advertisements

#நூலகத்தொடர் – 4: On Physics and Philosophy

Day 4:
On Physics and Philosophy – Bernard d’Espagnat.

உண்மையின் தன்மையென்ன, புலன்களின் தன்மையென்னவும் அளவுகோலின் அளவீட்டின் தன்மையென்ன என ஆழ்ந்துபேசிய நூல்.

உண்மையை உணர்தல் அரைகுறையாகயிருந்தால் என்னவாகும்? ஒரு மலரையெடுத்துக்கொண்டால், அதை, நாம் ஒரு நிறத்தில் காண்போம், பட்டாம்பூச்சி, வண்டுகள், தேனீகள் போன்ற ஒவ்வொருப்பூச்சியும் அதே மலரை வெவ்வேறுவண்ணத்தால் அறியவும் வாய்ப்புள்ளது. அப்படியானால் அளவீடு என்பது எதைவைத்து அளப்பது. அதைவிட, ஒரு மனிதர் பார்க்கும் நிறம் மற்றொரு மனிதருக்கும் அதேவாகத் தெரியவேண்டிய அவசியமுமில்லை.

நான்பார்க்கும் நிறத்தை என்னனுபவம் கற்றுத்தந்தது, ஆனால், என்னனுபவத்துக்கும் மற்றோரின் அனுபவத்துக்கும் உள்ள வித்தியாசத்தை அளவீடுகள் மூலம் எண்களைக் கொண்டுக் குறிப்பிடலாம். எண்களில் மாற்றம் வராது (ஓரளவுக்கு!). ஆனால், எண்களால் அளக்கமுடியாமல் போனால் என்னவாகும் என்பதே எல்லோருக்குமுள்ள கேள்வி. பொறியியலாளர்கள் பொருண்மையுலகில் இயந்திரங்கள் படைக்கும்போது பிரச்சினையில்லை. ஆனால், இன்னும் ஆழ்ந்து செல்லவேண்டிய நிலை உருவாகிக்கொண்டிருக்கும் இவ்வேளையில் கட்டுமான அறிவியலின் தாத்பரியத்தை உணரவேண்டிய சமயமாக உள்ளக் காலகட்டத்தில் ( அதாவது குவாண்டக் கணினியியல், குவாண்ட இணையதள நடவடிக்கைகள், செயற்கை நுண்ணறிவின் தாக்கம் உள்ள நேரத்தில்), இந்நூல் நிறையபேருக்கு உதவலாம்.

#நூலகத்தொடர்

Image may contain: text

களஞ்சியம் – 9: குவாண்டக்கணினி – 5

4கருந்துளைகள் கணினியானால்

நாம் ஐன்சுடைனுக்கும் குவாண்டக்கணினிக்கும் தொடர்பு உண்டு என்றுக்கண்டோம் அல்லவா, அதேபோல், எல்லாவிதமான பொருட்களைக்கொண்டும் கோட்பட்டளவில் குவாண்டக்கணினியும் செய்யலாம் எனக்கொண்டோம் அல்லவா?! அப்படியானால், இப்பிரபஞ்சத்தில் மிகவும் அதீதப் பொருளான கருந்துளையை வைத்தும் குவாண்டக்கணினியை செய்யலாமா?!

கோட்பாட்டளவிலான ஆய்வுகள் முடியும் என்றே சொல்வதுடன், கருந்துளைக் கணினிகள் இப்பிரபஞ்சத்தில் நடைபெறும் செயல்பாடுகளின் வேகத்திற்கும், சேதிக் கொள்ளளவுக்கும் எல்லைகளை வகுக்கும் என்றும் கூறுகின்றனர். அதாவது, வருடாவருடம் வரும் செல்பேசிகளின், கணினிகளின் குணாதிசயங்கள் உயர்ந்து கொண்டே வருகிறது. போன வருடம் வந்த செல்பேசி அல்லது கணினியின் CPU /செயல்திறனும், செயல்நினைவகமும், நினைவகமும் இவ்வருடம் வந்த செல்பேசி, கணினியில் உயரிய அளவுகள் கொண்டதாக இருக்கும். இது இப்படியே சென்றால், 20 வருடத்தில் நாம் அளவிலாத்திறன் கொண்ட செல்பேசி அல்லது கணினியை வடித்திருப்போம்1, அப்படியானால், இன்னும் 50 வருடத்தில் எப்படியிருக்கும் எனயோசித்தால், திறன் பன்மடங்காக ஆகியிருக்கும். அப்படியானால், இதற்கு முடிவு என்பதேக்கிடையாதா?! இல்லை இதற்கும் வரம்பு உண்டு என்பதே அனுமானம்.

அதாவது, இயற்கையில் காணப்படும் நியூட்டனின் ஈர்ப்புமாறிலி, பிளாங்க் மாறிலி, ஒளியின் திசைவேகம் போன்ற மாறிலிகள் தொழில்நுட்பவளர்ச்சிக்கு அறுதியிட்டு சில வரம்புகளை முன்வைக்கின்றன.

கருந்துளையில் நடைபெறும் செயல்பாடுகளை, நாம் இம்மாறிலிகளைக் கொண்டே அளக்கிறோம், அதாவது, கருந்துளையின் சிதறம்/entropy, வெப்பநிலை, கருந்துளையை ஒரு மிகப்பெரிய வட்டாக நினைத்து, அதில் ஒரு சேதியையிட்டால் அச்சேதி எம்மாறுதலும் அடையாமல் அதில் சேமிக்கவைக்கப்பட்டிருக்கும் காலம், இவையனைத்திலும் இம்மூன்று மாறிலிகளின் ஆதிக்கம் இருப்பதால், கருந்துளையே கணினிசெயல்பாட்டின் வரம்புகளையிடுவதைக் காணமுடியும். ஆக அதன்படி, நாம் செய்யக்கூடிய செயல்திறன்மிக்க மையசெயல்பாட்டு அலகின் வேகம் ஆக மட்டுமே இருக்கவியலும். அதற்குமேலான செயல்திறனை இவ்வண்டம் அனுமதிக்காது!!

2முடிவுரை

இதுபோன்ற வரம்புகள் மூலம் அண்டத்தில் நடக்கும் விசயங்களின் எல்லைகள் வரையறுக்கப்பட்டாலும், அவ்வரம்பை எட்டுவதற்கு நாம் பலபடிகள் பின் தங்கியிருக்கிறோம். ஆயினும், குவாண்ட ஆய்வுகளில் தற்பொழுது, ஐரோப்பிய மற்றும் சீனநாட்டின் விண்வெளி முகமங்கள் குவாண்டத்தொடர்பாடல் நடக்கும் இரு இடங்களின் தொலைவினையும் அதன் போக்கையும் ஒவ்வொரு வருடமும் அதிகரித்துவருகின்றனர். மேலும் பலதரப்பட்ட புதுமையான திண்மப்பொருள் ஆய்வுகளின் மூலம் பொருண்ம சுழற்கடத்திகள்/topological materials பல உருவாக்கப்படுகின்றன. இவையெல்லாம் குவாண்டக்கணினியில் பயன்படும் பட்சத்தில், குவாண்டக்கணினிகள் பிழைகள் தவிர்த்தும், நீண்டகாலத்திற்கு நிநைனைவகங்கள் சேதியை சேமிக்கவும் இயலும்.

1இம்மாதிரியான தொழில்நுட்ப வளர்ச்சியைக் குறிக்கும் விதியை மூருடைய விதி/ Moore’s law என்பார்கள், இவ்விதியை குவாண்டக்கணினிகள் உடைத்துவிட்டன

களஞ்சியம் – 2: நியூட்டனின் இயக்கவிதிகள் – 1

நியூட்டனின் இயக்கவிதிகள்

இயற்பியலின் மிக அடிப்படையானவிதிகளில் மிகவும் முக்கியமானது, பருப்பொருட்களின் இயக்கத்தின் அடிப்படை அளவீடுகளான, இடப்பெயர்ச்சி, திசைவேகம், முடுக்கம், விசை போன்றவற்றின் அளவுகளைக் கண்டறிய உதவுகிறது.

முதலில் பொருள், அதன் வடிவம் அதன் இயங்கும் முறைமைப் போன்றவற்றை, அரிஸ்டாடில், அர்கிட்டாஸ், பிதாகரஸ் போன்ற கிரேக்க அறிஞர்களும் அவர்களைச்சார்ந்த தத்துவ இயக்கங்களும் கிபி 3ஆம் நூற்றாண்டுவாக்கிலேயே அறிந்ததோடு மட்டுமில்லாது, மெக்கானிகா என்ற நூலையும் இயற்றியுள்ளனர், அதை இயற்றியவர், அரிஸ்டாட்டில் என்றும் அர்கிட்டாஸ் என்றும் முன்பின் முரணான வரலாறு உள்ளன.

ஆயினும், 16ஆம் நூற்றாண்டு அறிவியல்முறைகள் புதியப்பாதைகளைவழிவகுத்தன. இயல்தத்துவங்களாக இருந்த அறிவியல், நவீனஅறிவியலாக மாற அடிகோலியது. அக்காலத்தைய முக்கியமான அறிவியலாளர்களாலான, கோபர்னிகஸ், கலிலியோ, நியூட்டன் போன்றோர்களால் உருவானது, இவர்களில் நடுநாயகமாகக் கருதப்படுகிற, நியூட்டன் என்பவர், மூன்று இயக்கவிதிகளைத் தந்தனர். அவையெல்லாவற்றையும் காண்போம்.

1முதலாம் விதி

ஒரு பொருள் அமைதிநிலையிலோ அல்லது சீரான நேர்கோட்டு இயக்கநிலையிலோ இருக்கும்போது, அதன் மீது யாதொரு விசையும் இல்லாதவரை, அப்பொருள் தனது அமைதிநிலையையோ அல்லது நேர்கோட்டு இயக்க நிலையையோ மாற்றிக் கொள்ளாது.

அதாவது, நகராத பொருள் தானாக நகரப்போவதில்லை. அதன்மீது விசையைச் செலுத்தும்போது மட்டுமே நகராத நிலையில் இருந்து நகரும் நிலைக்கு மாறுபடும். அதேநேரம் குறிப்பிட்ட திசைவேகத்தில், ஒரு நேர்கோட்டில் சீராக இயங்கும் பருப்பொருள், அதன் இயக்கத்தில் இருந்து மாறுபடுவதற்கும் ஏதோவொரு விசையானது செலுத்தப்பட்டால் மட்டுமே அதன் இயக்கநிலையில் மாறுபாடு ஏற்படும்.

இம்மாதிரியான, அமைதிநிலை மற்றும் இயக்கநிலையில் பொருட்கள் நிலைத்து நிற்பதால், இத்தன்மையினை நிலைமம் (inertia) என்றுக் குறிப்பிடுவோம்.

எடுத்துக்காட்டு: ஒரு வண்டியின்/பேருந்தின் மையத்தில் ஒரு பந்து இருப்பதாகக் கொள்வோம். நீங்கள் அவ்வண்டியை முன்னே நேர்கோட்டு இயக்கத்தில் ஓட்டுகிறீர்கள் என்றும் கொள்வோம்,

வண்டியின் தரைதளத்தோடு பந்தை ஒரு பசையைக் கொண்டு ஒட்டிவிடுவோம். பின்னர் வண்டியை சீரான நேர்கோட்டு இயக்கத்திற்கு கொண்டுவருகிறோம் என்றுக் கொள்க. இப்பொழுது திடீரென வண்டியின் தடையை அழுத்தினால் என்னவாகும்? பந்து பசையால் ஒட்டப்பட்டு, அதுவும் வண்டியின் ஒரு உறுப்பாகவே மாறியிருப்பதால், அதன் வேகத்திலேயே பயணித்து, வண்டியை சடாரென நிறுத்தினாலும் பந்து அசையாதுநிற்கும்.

தற்பொழுது, இன்னொரு பந்தை, முதலாம் பந்தின் அருகிலேயே வைப்போம்.

இப்பொழுது நிறுத்திவைக்கப்பட்ட வண்டியை, திடீரென எடுப்பதாகக் கொள்வோம். இப்பொழுது, இரண்டாம் பந்து, வண்டியின் ஓட்டத்துக்கு எதிர்த்திசையிலோடும். அதாவது, அமைதியாக இருந்தப் பந்தானது. அதன் அமைதிநிலையிலேயே இருக்க முயலுவதாலேயே முன்னோக்கி ஓடும் பேருந்துக்கு பின்னோக்கி நகருகிறது.

இப்பொழுது, சீரான திசைவேகத்தில் ஓடும் பேருந்தை, திடீரென நீங்கள் வண்டியை நிறுத்தும்போது, அமைதியான இயக்கத்தில் இருக்கும் இரண்டாம் பந்தானது, வண்டி நிறுத்தப்பட்டப் பின்னரும் வண்டியின் பயணதிசையிலேயே உருண்டோடும்.

அதாவது, பந்து அமைதியாக இருந்தாலும், வண்டியின் மேல் இருப்பதால் வண்டியின் திசைவேகத்திலேயே இருந்த பந்து, திடீரென வண்டி நின்றாலும், அதே திசைவேகத்தைத்தக்க வைத்துக்கொள்வதால், முன்னர் உருண்டோடும். இம்மூன்று சோதனைகளும் நிலைமம் என்றப் பண்பை உணர்த்துகிறது. நகராப்பொருளாய் இருந்தாலும் அல்லது ஒரே சீர்வேகத்தில் இருந்தாலும் நிலையாய் இருப்பது, ஒரு விசைப்பாடு செலுத்தப்படும்போது, அதன் நிலையிலிருந்து நிலைமத்திலிருந்து மாறுகிறது. அப்படியானால் விசைப்பாட்டின் அளவிற்குத்தக்கன அப்பொருளின் இயக்கமும் இருக்க வேண்டுமல்லவா?! கொடுக்கப்பட்ட விசை அதிகமானால், பொருளின் அசைவும் அதிகமாகும், குறைவானால் குறைவாக இருக்கும். சரிதானா?! அதுதான் இரண்டாம் விதிக்கு அடித்தளம், அப்படியே இரண்டாம் விதியை நோக்குவோம்!

நேரமும் இரண்டாம் வெப்பியக்கவிதியும்!

வெப்பவியக்கவியல் என்பது அடிப்படையான அறிவியலில் மிகமுக்கியமானப் பிரிவு. இவ்வண்டத்தில் சில வரையறைகளை மாறாததாக நாமறிந்த அளவிலான அறிவியலின் பிரகாரம் நாம் வைத்திருக்கிறோம், அம்மாதிரியான இயற்கைவிதிமுறைகளை அடிப்படையான விதிகளாகக்கொண்டது வெப்பவியக்கவியல்.

வெப்பியக்கவிதிகளின் மூலம், மேலேக்குறிப்பிட்டமாதிரியான, இயற்கையின் எல்லைகள் வரையறுக்கப்படும்போது, அவை இப்பிரிவுக்கு நேரடித்தொடர்பில்லாத மற்றப்புலங்களின் இயற்கையெல்லைகளாகக் கருதப்படுவனவற்றையும் இவை வரையறுக்கின்றது என்பது மிகவும் ஆச்சரியமானது.

அவ்வாறானவொன்று, நேரம் என்பது முன்னோக்கிமட்டுமே ஓடும் என்பது! நேரத்தின் திசையை திருப்பவியலாது. இதன் அர்த்தம் என்ன?! ஒரு இயக்கம் நடைபெறும்போது, அதுசார்ந்த காரணிகளின் மாற்றங்களினால் இயக்கம் நடைபெறுகிறது எனக் கொள்வோம். காட்டாக, நீரையூற்றி செடிவளர்க்கிறோம் எனக்கொள்வோம், செடிவளர்ந்து மரமாவது மரத்தின் வளர்ச்சிவழியான இயக்கம்.

இவ்வியக்கத்தை, நாம் தலைகீழாக ஆக்கினால், நேரத்தைத் திருப்பமுடியுமா? குறைந்தபட்சம் மரத்தின் வளர்ச்சியை தலைகீழாக்கி செடியாக்கமுடியுமா?
ஒருசமயம், நாம் அம்மரத்திலிருந்து நீரை உறிஞ்சுவதாகக் கொள்வோம், மரமானது மீண்டும் செடியாகுமா?! கட்டாயம் இவ்வாறு செய்யவியலாது என்பதை நமது காரண அறிவு நமக்கு உணர்த்தும். ஆனால் அது உண்மைதானா ஒரு மரம் நீரில்லாமல் இருக்கும் காலத்தில் இலைகளையுதிர்க்கிறதேயன்றி,  தன்னிலுள்ள நீரைவெளியேற்றி செடியாகவா ஆகிறது?

நேரம் என்பது பெரும்பாலும் ஒருபொருளின் தன்மை மாறும் அடிப்படையிலிருந்தே நாம் வரையறுக்கிறோம் என்பதை முதற்கட்டுரையில் கண்டோம். எவ்வகைக் கடிகாரமானாலும், கடிகாரத்தின் உள்ளிருக்கும் பொருள்(மணல், நீர், அணு, மின்காந்தமாற்றம்) மாறுவதால் நம்மால் நேரமாற்றத்தை உணரமுடிகிறது. “பாட்டும்நானே பாவமும்நானே” என்றப்பாடலில் நேரம் நிற்கும் எனும்பொருளில் அசைவனவெல்லாம் அசையாது காண்பித்தவர் உண்மையில் மிகப்பெரிய படைப்பாளிதான். அவ்வாறு அசையாது மொத்த அண்டமும் மோனநிலையில் ஆழ்நிலைதியானத்தில் இருப்பின், அப்பொழுது நேரமானது மாறாதிருக்கும்.

சும்மாப்பேசுங்கால்/handwaving argument, மரத்தின் வளர்ச்சியானது, அடிப்படையில் வெப்பவியக்கவியல் மாற்றங்களால் விளைவனவே எனலாம். அதாவது, ஒளிச்சேர்க்கையென்பது மேலோட்டமாகக் காணும்போதே — கரியமிலவாயு, ஒளி, பச்சையம், அதனால் விளையும் வேதிசுழற்சிகள், எல்லாம் வெப்பவியக்கவியல் சார்ந்தவையென நமது பள்ளிக்கூட அறிவைக்கொண்டே அறியலாம். நீரழுத்தவேறுபாடும் அடிப்படையில் வெப்பவியக்கவிசயமே. சரி! அப்படியே விசயங்களை லீகோ செங்கற்கள் போல் சேர்த்தமைப்போம்!

வளர்ச்சியென்பது நேரத்தைக் குறிக்கிறது. உலகில் ஏதுமில்லையெனக்கொள்வோம், சூரியசந்திரர்கூட இல்லை. நீங்கள் மட்டுமிருக்கிறீர்கள்,உங்களிடம் ஒரேயொருமரம் இருக்கிறதெனில், உங்களின் நேரத்தைக் கணக்கிட அம்மரமே கடிகாரமாகிப்போகும் என்பதுதானே உண்மை! ஒருவேளை இதைப்புரிந்துகொள்ள கடினமாக இருக்கலாம்! Who am I எனும் சாக்கிச்சான் படத்தில், சாக்கிச்சான் விபத்தில் சிக்கிவிட, ஒரு ஆப்பிரிக்கப் பழங்குடியினர் அவரைக்காற்றியிருப்பர். கதைப்பிரகாரம், முற்றிலும் தான்யாரென்பதையே  மறந்திருப்பார், அதனால் மயக்கத்திலிருந்து விழிக்கும்போது, ஒன்றும் புரியாமல் who am i? எனக்கேட்க, அவரை அப்பழங்குடியினர் அவர்பெயர் “who am I” எனக்கூறுகிறாரெனப் புரிந்துகொண்டு அவ்வாறே அழைப்பார்கள்! இதேமாதிரி தான் நாம் அறிவியல் செய்கிறோம் என்பது ஒருபுறமானாலும், விசயம் அதுவல்ல!

சான் சீனம்பேச, அவர்கள் சுவாஹிலிபோல் ஏதோவொன்றுப்பேச என சைகையிலேயே வாழ்க்கைப் போகும்போது ஒருநாள். அங்கிருக்கும் அவருடைய நண்பனான சிறுவனிடம் சென்று, சூரியனைக்குறிப்பிட்டு கிழக்குதிசையைக்காட்டி, பின்னர் மேற்கைக்காண்பித்து, ஒரு கல்லையெடுத்துவைப்பார், அதாவது ஒருநாள் கணக்கு. பின்னர் திரும்பவும் அதையேசெய்து மற்றொரு கல்லைவைப்பார். இவ்வாறுக் குறிப்பிட்டுவிட்டு தூரத்தில் இருக்கும் மலையைக்காண்பித்து, அங்குபோவதற்கு இதுபோல் எத்தனைக்கற்கள் எனக்கேட்பார்! சிறுவன் கற்களையெல்லாம் தள்ளிவிட்டுவிட்டு, சிரித்துக்கொண்டே கைநிறைய மண்ணையெடுத்து வைப்பான், அதாவது எண்ணிலடங்காநாட்களாகும் எனும் அர்த்தத்தில்!! இது அளவையியலின் அடிப்படை விசயம்!

திரும்பவும், நம் மரத்துக்கேத் தாவுவோம்! ஆக நேரம் மாறுவதை, மரத்திலேற்படும் இலை வளர்ச்சி, உயரம் கொண்டு அளக்கலாம் என்றால்;  அதேபோல, நாம் முன்னர் கண்டதுபோல, மரத்தின் வளர்ச்சி வெப்பவியக்கவியல் வளர்ச்சி என்றால்; நேரம் வெப்பவியக்கவியல் இரண்டையும் கலக்கலாமா! வெப்பவியக்கவியலின் அடாவடி அடிப்படைவிதியானது இரண்டாம் வெப்பவியக்கவியல் விதியாகும்! இதில் பலவடிவங்கள் பலகாலகட்டங்களில் உருவாக்கப்பட்டது. இதைவைத்து நடக்காத சண்டையே கிடையாது எனலாம்!

போகிறபோக்கில் இன்னொருகதை! பேராசிரியர் வி. பாலகிருஷ்ணன் (வி.பால்கி-IITM) இந்தியாவில் அவரின் இயற்பியல் உரைகளுக்காய் பெரும்பாலானோரால் அறியப்பட்டவர், ஒருமுறை அவரிடம் பேசும்போது அவர் இக்கதையைக்குறிப்பிட்டார், அவருடைய அமெரிக்க ஆய்வுக்காலத்தில் நடந்ததாகக்கூறியது.

ஒருமுறை பிரபல நோபல் இயற்பியலாளர் ஜூலியான் ஷவிங்கர் (Julian Schwinger) தன்னுடைய வகுப்பில், இரண்டாம் வெப்பவியக்கவியல் விதி என்ன எனக்கேட்க, ஒருவர் அவ்விதியினை உரைக்க, இன்னொருவர், இல்லை அது தவறென்று மறுதலித்து அவரொன்றை உரைக்க. வகுப்பே படுபயங்கரமான விவாதத்தில் ஈடுபட்டதாம்! பார்த்துக்கொண்டே இருந்த சுவிங்கர், எழுதுபலகைக்குச் சென்று, முதலாமவர் கூறியதை எழுதினாராம், சற்றுத்தள்ளி இரண்டாமவர் கூறியதை எழுதினாராம், வகுப்பில் யார்யார் எதை ஆதரிக்கிறார்கள் எனக்கேட்டாராம். வகுப்பை அப்படியே இரண்டாகப்பிரித்து, கயிறிழுக்கும் போட்டியொன்றை வைப்போம், யார் வெற்றிபெறுகிறார்களோ அவர்கள் கூறுவதையே ஏற்போம் என நகைச்சுவையாக உரைத்திருக்கிறார், அதாவது அவ்விருவர் கூறியதும் ஒரே விசயத்தைத்தான் என்பதே!  இப்படி பலவிதமான விதிகளுண்டு என்றாலும் இன்றும் இரண்டாம் விதியை வெவ்வேறுமுறைகளில் புரிந்துக்கொள்கிறார்கள், வரையறுக்கிறார்கள்.

இப்படியான இரண்டாம் வெப்பியக்கவியல்விதியானது என்னவென்பதை அவ்வாறேக் காண்பதைக்காட்டிலும் அதன் தன்மையை, என்றோபி மாறுபாட்டைக் குறிப்பதென்று நம் பள்ளியறிவு உரைக்கும். என்றோபி என்பதன் சொல்மூலம் en-உள், trope – மாறுபாடு => உள்மாறுபாடு. அதாவது ஒரு வெப்பியக்க அமைவின்/எந்திரத்தினமேல் நாம் கொடுக்கும் ஆற்றலும் அதனால் அவ்வியந்திரம் நமக்கு செய்யும் வேலையின் ஆற்றலாக மாறும்வகை!

அப்படி மாறும்போது எவ்வகையில் மாறுகிறது என்பதைக் குறிப்பதற்கான சொல்லே என்றோபி, இதை சிதறம் என்று மொழியாக்கியுள்ளார்கள். சிதறம் என்பது நாம் கொடுத்த ஆற்றல், மற்றொருவகையில் மாறும் போது ஏற்படும் சிதறலைக் குறிப்பதாக எடுக்கலாம், காட்டாக, கல்லெண்ணெய்/petrol ஊற்றி வண்டியைச் செலுத்துகிறோம், எண்ணெய் எரிந்து உருவாகும் ஆற்றலால், வண்டியதன் எடையையும், நம்மையும் தூக்கிச் செல்கிறது.

நாம் ஊற்றிய கல்லெண்ணெய்க்கான வேலையை அப்படியே செய்கிறதா?? இல்லை, வண்டிக்கும்/அதாவது சக்கரத்துக்கும் சாலைக்குமான உராய்வையும் தாண்டிச்செல்லும் ஆற்றலுக்காய் கொஞ்சம்,  வண்டியில் இருக்கும் அசையும் கருவிகளின் உராய்வுக்கும் அவ்வாற்றல் கொஞ்சம் செல்கிறது. இது தவிர்த்து, இயந்திரம் சூடாவதில் கொஞ்சம் செல்கிறது, இப்படி நாம் ஊற்றும் எண்ணெய்க்குத் தக்கன வேலைநடவாமல், இஷ்டத்துக்கும் இயற்கை நம் எண்ணெயை/எண்ணெய் எரிந்து உருவாகும் ஆற்றலை உறிஞ்சியது போக மிச்ச எண்ணெயில் வேலைநடக்கிறது.

எனினும், சிதறம் என்பதை சரியான மொழிமாற்றமாக/ கொள்ளமுடியாது. — அறிவியற்றமிழ் ஆர்வலரும் விஞ்ஞானியுமான கதிர் கிருஷ்ணமூர்த்தி அண்ணன் அவ்வப்போது குறிப்பதுபோல், என்றோபியென்றே கூட குறிக்கலாமெனத் தோன்றுகிறது! சரி நிரம்ப தள்ளிவந்துவிட்டோம்.

திரும்பவும் மரத்துக்கேத் தாவிவிடுவோம். ஆக வெப்பியக்கவிதிகளின் படியாக வளரும் மரம், நேரத்தைக்குறிப்பிடுவதற்கும் பயன்படுகிறது எனக்கண்டோம்.   ஒரு மூடிய அமைவில் (அனைத்து உறுப்புகளிலும் எப்படி ஆற்றல் பரவியுள்ளது என்றுத் தெரிந்திருப்பது) என்றோபிமாற்றமானது மாறாது (dS = 0), அதேநேரம் திறந்த அமைவில் (மொத்த உறுப்புகளிலும் ஆற்றட்பங்கீடு எவ்வாறு என்றறியா அமைவில்) என்றோபிமாற்றமானது பெரிதாகிக்கொண்டேசெல்லும்(dS > 0), ஏனெனில் ஆற்றல்வெவ்வேறுவடிவங்களில் வெளிச்சென்றுக்கொண்டேயிருக்கும்.

dS \geq \frac{dQ}{T}

இதில் dS என்பது என்றோபிமாறுபாடு, dQ என்பது மொத்தஆற்றலில் வேறுபாடு, T என்பது நாமெடுத்துக்கொள்ளும் அமைவின் வெப்பநிலை.

S \geq \int_\mathcal{P} \frac{dQ}{T}

இது இரண்டாம் வெப்பியக்கவிதியின் ஒரு பரிமாணம்.  மேலும் இவ்விதி நமது அண்டமுழுமைக்கும் மாறாது அமையுமுண்மை. அப்படியிருக்குங்கால், என்றோபி வளரும்பொழுது, நேரமும் அதிகரித்துச்செல்லும், அதேபோல் நேரம் ஆக ஆக, என்றோபிமாற்றமும் அதிகரிக்கும். ஆக, என்றோபிமாற்றம் என்பது குறையவாய்ப்பேயில்லை, ஆயின் அதிகரிக்கும் என்பதே இயற்கையில் நாம் காணும் உண்மை.  உலகில் மரத்தையும் உங்களையும் தவிர்த்து யாருமில்லையெனினும், நேரம் திரும்பமுடியாது போலத் தான் தெரிகிறது!  ஆக மரமானது கரியாகவாய்ப்புள்ளதே தவிர்த்து செடியாகவாய்ப்பில்லை!

அதன் மற்றோரர்த்தம், நேரத்தில் பின்னோக்கிசெல்லமுடியாது, அப்படியானால், அதற்கான வாய்ப்பேயில்லையா?!

இப்படி ஒரேநிலையில் பலவிதமானத்தொடர்புகளையெல்லாம் குறிப்பிடமுடியாமல் ஒரேபொருளில்பேசுவதென்ற என்னுடைய தற்போதையநிலை, என் கையைக் கட்டிக்கொண்டு எழுதுவதுபோலவே உள்ளது, என் தலையில் உதிக்கும் அனைத்தையும் எழுதினால், புரிவதில் சிக்கலாகவேறு உள்ளதென்று நண்பர்கள் கூறுகிறார்கள்!!  சரி என்னுடைய இந்நிலையிலும்  இரண்டாம் வெப்பியக்கவிதியின் தாக்கத்தைக் காணலாம்.  அப்படியென்றால், நான் எழுதுவதற்கு எத்தனித்து எழுதாத அந்த மனவுளைச்சல் என்னவாகும்?  என் மூளையும் அதுசார்ந்த செயல்பாடுகளும் கொஞ்சம் அண்டத்திற்குள் என்றோபியை அதிகப்படுத்தும்!

மனித/விலங்கு மூளைமட்டுந்தானா, கணினிக்கு மூளைபோல் செயல்படும் கணினிவட்டுகள், நினைவகங்கள்?!    கணினி, கைபேசிகளில் சேர்த்துவைத்திருக்கும் படங்கள் அல்லது எவ்வெவ்வகையானக் கோப்புகளையும் அழித்தால் என்னவாகும்?!  அதுவும் அண்டத்தின் என்றோபியோடு சேருமா?! ஆம்!  எல்லாம் கொஞ்சம் கொஞ்சமாயக் காண்போம்.  எப்படிக் கணக்கிடுவது என்பதையும் சேர்க்கலாமென்றிருக்கிறேன், அது கொஞ்சம் சிக்கல்மிகுந்த கணிதத்தொடு வளராலாம், ஆயினும் இறங்கி விளங்கிக்கொள்வோம்.

 

இண்டர்ஸ்டெல்லாரின் -நிகழ்வெல்லையில்/event horizon ஓர் சர்ரியல் கனவு ..

 இராஜ் சிவா அண்ணன் மிகவும் முக்கியமான கூர்மையானக் கேள்வியொன்றை, நேரத்தைப் பற்றி எழுப்பியிருந்தார், அதற்கான பதில் எனக்குத் தெரிந்தவரை இதுவரை செய்த ஆய்வுகள் அளவில் தெளிவானதாக இல்லை.  கேள்விக்கானப் பதில் என்பதை விட, அதைச்சுற்றிய விவரங்களைப் பகிர்கிறேன்.

நான் மேலே கூறியிருந்ததன்படி, நிகழ்வு எல்லையில் நேரம் உறைந்து இருக்குமென்றால், அந்த இடத்தில், ஒளியும் நகர முடியாமல் உறைந்த நிலையிலேயே இருக்கும். அதாவது போட்டோன்கள் அங்கு அசையும் நிலையில் இருக்காது. அப்படியெனின், அங்கு எதையும் பார்க்க முடியாது. ஒரு பொருளிலிருந்து வரும் ஒளி கண்ணில் பட்டால்தானே அந்தப் பொருள் தெரியும். ஒன்றையும் பார்க்க முடியாது என்பது மட்டுமல்ல, எதையும் உணரவும் முடியாது, புரிந்து கொள்ளவும் முடியாது.

காண்பது உணர்வது எல்லாம் அவரின் மனத்தில் நடப்பவையாக இருக்கவேண்டும். உதாரணத்திற்கு நேரம் உறைநிலையில் இருப்பது என்பது அவரது விண்கலத்தின் நேரம் உறைந்திருக்கிறது. வெளியில் உள்ள ஒளியன்/போட்டான் சிதறுவது இவருக்கு ஒளியின் வேகத்திலேயே நடப்பதாகத் தான் தெரியும்! மேலும் ஒரு வேளை விண்வெளிவீரர் அமைதியாக இருந்தாலும் அவருக்கு கடந்தகால “நிகழ்வுகளைப் பார்த்துக்” கடக்கும் வேகம் அதிகமாக இருக்கும். உணர்வுகள் மூளையைச் சென்றடைவதற்கான வேகம் சராசரியாக 1.1 நொடிகள் என்பதாகக் கொண்டால், ஒரு வேளை அவர் ஒளியின் திசைவேகத்தில் பயணித்தால், ஒரு நொடிக்கு ஒரு நிகழ்வு என்றுவைத்தால்கூட, அவர் கண்டு முடிப்பதற்குள் கிட்டத்தட்ட 10^8 “நிகழ்வுகள்” நடைபெறும், அதில் சில நினைவுகளைமட்டும் வெளியில் காணபதென்பது ஒரு சர்ரியலிசக் கனவாகத்தான் கொள்ளவேண்டும்! இவ்வளவு வேகமாக நாம் பார்க்கவும் உணரவும் முடியாது.

நேரம் என்பது மிகவும் குழப்பமான விசயம் தான் எங்களுக்கும். அதன் ஆதாரம் என்ன என்பதும் அதன் ஓட்டம் எந்தெந்தத்திசையில் இருக்கிறது என்பதும் குழப்பமானது தான். அதுவும் கருந்துளையில் நேரம், நிகழ்வெல்லையில் நடைபெறும் இயக்கத்தைப் பற்றிய ஆய்வுகளும் இன்னும் முழுமையானதாகவில்லை.

ஐன்ஸ்டைனின் கருத்துப்பிரகாரம், ஒளியின் திசைவேகமானது, நாமும் ஒளியின் திசைவேகத்திலேயே சென்றாலும், ஒளியின் திசைவேகத்தில் தான் இருக்கும் என்பதைக் கருத்தில் கொண்டாலும், ஷாப்பிரோ நேரவித்தியாசம் போன்ற விசயங்கள் வெளியின் வளைவால் ஏற்படும், ஆனாலும் அதிக நேர வேறுபாடு இருக்காது. ஆயினும் இது பற்றிய ஆய்வுகள் ஏதும் இருப்பது போல் தெரியவில்லை. இது கிட்டத்தட்ட சிங்குலாரிட்டிக்குள் விழுவதற்கு முந்தைய இடம், நேரமும் இடமும் மிகவிரைவாக மாறுவதற்கு முநதைய இடம் எனினும், நாம் எவ்விடத்தில் இருந்து பார்க்கிறோம் என்பதும் மிகமுக்கியம். மேலும் நமது உணர்விகள்/சென்சார் மிகவிரைவாக வேலைசெய்வனவாக இருக்கவேண்டும். தற்போதைய எலக்றான் உணர்விகள் நேனோ நொடிகள் 10^{-9} தாமதத்துடன் இயங்குவன, உங்களுடையக் கேள்வியின் பிரகாரம், அவற்றாலும் அந்நேரத்தில் நடக்கும் மாற்றத்தை உணர்ந்துப் பதியவியலாது.

இப்படத்தில் கருத்துப்பிழைக்கான வாய்ப்புக் குறைவானதாகவே இருக்கவேண்டும். இவ்வருடத்தின் நோபல் இயற்பியலாளரான கிப் தோர்ன் போன்றோர் தலைமையில், நாம் அறிந்த வெளி-நேர அனைத்துக்கோட்பாடுகளையும் கணினியில் ஒப்புமைசெய்தே எடுத்துள்ளனர், எனினும், மிகைப்படுத்துதலே கதைக்கு அழகு, கதைக்கும் காலில்லை!!

மேலும் இப்படத்தில் அவர்கள் செய்த ஆய்வைக் கட்டுரையாக, அந்த ஆய்வுக்குழுவே வெளியிட்டுள்ளனர்.

https://arxiv.org/abs/1502.03809

குவாண்டம் சீனோ (Zeno) விளைவு

கதிரியக்கத் தனிமங்களின் அரைவாழ்வுக்காலம் பற்றிய விவாதத்தில் குவாண்ட சீனோ விளைவு எப்படிவந்தது என்பது பற்றிய ஒரு சிறுகுறிப்பையிட்டிருந்தேன். அது ….

அரைவாழ்வுக்காலம் என்பது நிகழ்தகவின் அடிப்படையிலானதே. அணுக்களின் எண்ணிக்கை மாறுபாட்டின் விகிதம் அணுவின் எண்ணிக்கைக்கு நேர்விகிதத்தில் இருக்கும் (d N/dt = -k N). இதிலிருந்து தான் குந்தாங்கூறான மடக்கை/பன்மடங்கானச் சிதைவிற்கு (exponential decay)க்கு வழிவகுப்பது. ஒரு அணு எப்பொழுது சிதைவுறும் என்பதைக் காணமுடியாததன் அடிப்படையிலேயே, குவாண்டவியலின் ஸ்ரோடிங்கரின் பூனை எடுத்துக்காட்டு வருகிறது. ஒரு வேளை ஒரு அணு எப்பொழுதுச்சிதைவுறும் என்பதைக் காணவிழைந்து தொடர்ந்து அதைப்பார்த்துக்கொண்டேயிருந்தால் அவ்வணு சிதைவுறவேச் செய்யாது என்பதை புகழ்பெற்ற இயற்பியலர் ஈசிஜி சுதர்சன் கோட்பாட்டளவில் கண்டறிந்தனர். அவ்விளைவு குவாண்டம் ஜீனோ விளைவு (2-ஆம் ஜீனோ தோற்றமுரணின் குவாண்ட வடிவம்) என இந்நாளில் அறியப்படுகிறது.

இது சார்ந்த அணுக்கரு ஒத்திசைவு சோதனைகளையும், சில கோட்பாட்டுக்கணக்கீடுகளையும் என்னுடைய பிஹெச்டி ஆய்வில் செய்திருந்தேன். தற்போதும் சூப்பர்சிம்மட்ரி/ மீச்சமச்சீர்மையில் சீனோவிளைவு சார்ந்த தொடர்புகளையும் காண்கிறேன். வழக்கம்போல “பொறுமையா…க” இது பற்றி எழுதலாம் என நினைக்கிறேன்.

இதைத்தொடர்ந்து நண்பரொருவர்,

சுஜாதா ஒரு புத்தகத்தில் Photon Decay
பற்றி கூறியிருந்தார் அதுவும் நீங்கள் சொல்வதும் ஒன்றா ?

எனக்கேட்டிருந்தார்.

 

அவர் எப்பொருளில் ஒளியன் சிதைவு/Photon decay பற்றிக்குறிப்பிட்டிருந்தார் எனத் தெரியவில்லை. ஆயினும் பொதுவாக ஒளியனின் சிதைவு நிகழ 10^{15} அல்லது 10^{18} வருடங்கள் (நாம் இருக்கும் இடத்தைப் பொருத்து) ஆகக் கூறியுள்ளனர். அதாவது 100 கோடி கோடி வருடங்கள் பொறுத்திருக்கவேண்டும். ஆக சீனோ விளைவினால் மாறாதிருக்க வேண்டிய அவசியமில்லை.

ஒரு வேளை சுஜாதா, ஒரு பொருண்மையும் அதன் எதிர்பொருண்மையும் கூடும்/சிதறும் போது அது ஒளியாக மாறும் என்பது ஒரு கணக்கு, என்பதைக்குறிப்பிட்டிருக்கலாம். அவ்வொளியன் மீண்டும், பொருண்மையையும் எதிர்பொருண்மையும் உண்டுபண்ணவும் வாய்ப்புள்ளது, ஆனால் இச்சிதறலை/மோதலை சிதைவாகக் கொள்ளமுடியாது. ஒரு பொருண்மையானது ஆற்றல்வடிவில் (அதாவது ஒளி வடிவில் ) மாறி திரும்பவும்பொருண்மையாக மாறுந்நிலையிது (ஆற்றல் அழிவின்மைவிதி).

ஆயினும் சிதைவுறுமொன்றை பார்த்துக்கொண்டேயிருந்தால் சிதைவுறாது என்ற நினைப்பே தலைவலியை உண்டுபண்ணினாலும், அவை பல தலைவலிகளைத்தவிர்க்கக்கூடிய ஒன்று! இதைப்பற்றி பின்னர் எழுதுகிறேன்.

இது சார்ந்த அணுக்கரு ஒத்திசைவு சோதனைகளையும், சில கோட்பாட்டுக்கணக்கீடுகளையும் என்னுடைய பிஹெச்டி ஆய்வில் செய்திருந்தேன். தற்போதும் சூப்பர்சிம்மட்ரி/ மீச்சமச்சீர்மையில் சீனோவிளைவு சார்ந்த தொடர்புகளையும் காண்கிறேன். வழக்கம்போல “பொறுமையா…க” இது பற்றி எழுதலாம் என நினைக்கிறேன்.

 

அறிவியற்தமிழ்: சொல்லாக்கம்

சொல்லாய்வுக் குழுமத்தில் Correlation, regression போன்ற சொற்களில் நடக்கும் ஆய்வுகளைத் தொடர்ந்து, அறிவியல் சொற்பிறப்பாக்கத்திற்கு சிலக் காரணிகளைக் கொள்ளலாம் என்பது குறித்து என்னுடைய யோசனைகள்:

இம்மாதிரியானக் காரலேஷன்-தொடர்புகளை இயற்கையில் நடக்கும் விசயங்களுடன் ஏற்றிக்கூறத்தக்க வகையில் அமைந்தால் நன்றாக இருக்கும். இலக்கணமும் ஏரணத்தின் (logic) ஒரு பகுதியெனும் போது, தற்குறிப்பேற்றல் போன்ற அணிவகைகளின் பெயர்கள், அக்காலப் பாடல்களின் பயன்படுத்திய சொற்களை போலவும் சிந்திக்கலாம் எனத்தோன்றுகிறது.

ஒரு வகையில், பெரும்பாலான காரலேஷன்களின் தன்மை தற்குறிப்பேற்றல் போன்றவைதான், அது எப்படியென்றால், ஒரு அளவீட்டின் வரையறையும் அவ்வரையறைக் கட்டமைக்கப்படும் விதமும் நமக்குத் தெரிந்த தகவல்களைக் கொண்டே அமையும். உதாரணத்துக்கு, சில அளவீடுகளும் அதைப்புரிந்துகொள்ளும் விதமும்:
கண்ணால் காணவியலும்/அளவீட்டால் அறிவது – empirical,
அளவீட்டின் உண்மையான இயல்பு – ontological,
கோட்பாட்டை, அளவீட்டால் அளந்து, உய்த்துணர்தல் – epistemological,
மாறுபடுந்தன்மையைப் பொருத்த அளவீட்டின் இயல்பு – relational
என இன்னும் பலநிலைகளில் பிரித்து நாம் காண முடியும். நம்முடைய ஏரணத்தின் பெரும்பகுதி மெய்யியலையும் நியாயசாத்திரத்தின் அடிப்படையிலும் உள்ளது. பெரும்பாலும் சம்ஸ்கிருத வார்த்தைகளைக் கொண்டு உள்ளவை அவை, அவற்றில் இருந்து தமிழுக்கு செல்வது கொஞ்சம் எளிதும், அதே நேரம், வெகுசன மக்களை மிரட்டாத, உறுத்தாதத் தொனியிலும் அமையலாம் என்பது என்னுடையக் கருத்து. மேலும் இங்குள்ள சான்றோர் யாவரும் இம்மாதிரிவிசயங்களில் வல்லுநர்கள்.

குவாண்டம் காரலேஷன் போன்ற குவாண்டவியலின் அளவீடுகள், கிளாசிகல் எனப்படும் பாரம்பரிய புள்ளியியலை மீறவேண்டும் என்பது ஒரு வரையறை! அந்த காரலேஷனின் அடிப்படைக் காரணமாகக் காண்பவையெல்லாம் உண்மையில் ஒட்டுறவுக் கொண்டவையே. அண்டத்தில் வெவ்வேறு இடங்களில் தொடர்பேயில்லாது இருந்தாலும், கு. காரலேஷன்களைத் தருபவை. இருக்கட்டும்.

நான் குறிப்பிடும் இவ்விசயங்களையெல்லாம் ஒன்றாகக் கோர்த்து ஒரு வார்த்தையைப் படைக்கமுடியாது எனினும், இன்னும் நல்ல வார்த்தையாடல்களைத் தருவிக்க, என் கருத்துகள் உதவும் என நம்புகிறேன்.

2016 இயற்பியல் நோபல் பரிசும் திண்மவியலில் இடவியற்கோட்பாடும்

2016 ஆமாண்டிற்கான இயற்பியல் நோபல் பரிசு,  பொருண்மையீர்ப்பு அலைகளுக்கு (gravitational waves), கரும்பொருள் கோட்பாடு (dark matter) என பலவிதமான எதிர்பார்ப்பைக் கிளப்பி, திடீரென யாருமே எதிர்பாராதவகையில் இடவியற்கோட்பாட்டை(topological) பொருண்மவியலின் (condensed matter physics) நுட்பங்களின்பால் கண்ட இயற்பியலர்கள், பேராசிரியர்கள் தூல்ஸ் (Thouless), ஹால்டேன் (Haldane), கோசர்லிட்ச் (Kosterlitz) ஆகியோருக்கு வழங்கப்பட்டுள்ளது.

பொருண்மங்கள் பெரும்பாலும் திண்ம நீர்ம வளிம நிலைகளில் வகைப்படுத்தப்பட்டதோடும், அயனிக்குழம்பான பிளாஸ்மாகவும், போசு-ஐன்ஸ்டைன் செறிவுநிலைகளாகவும் (BEC), பொருண்மச்சுழற்கடத்தி நிலைகளாகவும் (Topological materials), புதிய பொருண்மநிலைகளாக வகைப்படுத்தப்படுகின்றன.

மரபியற்பியல் கோட்பாட்டின்படியும் குவாண்டக் கோட்பாட்டின்படியும் பொருட்களின் நிலைமாற்றங்கள், அந்தந்தப் பொருட்களைப் பொறுத்து வெப்ப,மின்,காந்தப்புலங்களுடன் ஊடாடுவதால் ஏற்படுவன.  அதை ஏன் நாம் இடவியல் வழியாகப் பார்க்கிறோம் என்பதையும் அதற்கும் சாதாரண நிலைமாற்றங்களுக்கும் உள்ள வேறுபாட்டையும் இயன்ற அளவு எளியமுறையில் விளக்குகிறேன்.  ஏற்கனவே இது சார்ந்த ஒரு பதிவை முடிவிலா மின் சுற்றும், கொஞ்சம் ஜனரஞ்சக திண்ம அறிவியலும்! எனும் தலைப்பில் முன்னமேயிட்டுள்ளேன், அதில் இடவியற்கோட்பாடு சார்ந்த விசயங்களைக் கோடிட்டுக்காண்பித்திருந்தேன்.   அதில் எலக்றானியல் சுற்றுகள், மரபணு உயிரியலிலும் (DNA அமைப்பு) திண்மவியலிலும் (ஒழுங்கிலாப் போக்கு -Random walk) எண்ணியலிலும் (Number theory)  இடம்பெறும் நிகழ்வுகளிலும் கணக்கீடுகளிலும் பிரதிபலிப்பதில் காணலாம்.

இடவியல் என்பது என்ன?!

நாம் பொதுவாக எந்தவொரு அளவீட்டையும் எண்களால் குறிப்பிடுவோம், சில நேரங்களில் அதனுடன் பிறப்பண்புகளையும் சேர்த்துக் குறிப்பிடவேண்டியிருக்கும்,  இருவர் நிலத்தைப் பற்றிப் பேசிக்கொள்கிறார்கள் எனக் கொள்வோம்.

உதாரணத்திற்கு எனக்கென்று சொந்த இடம் உள்ளது என ஒருவர் கூறினால், எவ்வளவு எனக் கேட்போம், 100 ஏக்கர் என்று அவர் கூறுவதாய் கொண்டால், உடனே மறுகேள்வி எங்கே எனவோ எந்தப்பக்கம் எனவோ திசை சார்ந்து இருக்கும், நமது கேள்வி.

இடத்தையும் குறிப்பிட்டவுடன், அது நஞ்சை புஞ்சையா என்ற அதனுள் உறையும் சேதி கூடத் தெரிந்துவிடலாம். அதாவது, அவர் ஆற்றங்கரையருகில் எனக் கூறுகிறார் என்று வைத்துக் கொள்வோம், தானாகவே, அது வளமான நஞ்சைப்பகுதி தான் எனக் கருத்தில் கொள்வோம்.

IMAG1569.jpg

மலைமுகடு, சி1 சி2 சி3 –முகட்டில் வெவ்வேறு உயரங்கள்; அதே சி1 சி2 சி3யின் வரைகோட்டுப்படம்

இப்படி ஒருபொருளை அல்லது ஒரு விசயத்தைக் குறிப்பிட, அதுபற்றியப் பண்புகளைக் குறிப்பிட்டுக்கொண்டே செல்லலாம், இவையனத்தையும் ஒருக் குறிப்பிட்ட வடிவம் மூலம் குறிக்க முடியும்.  உதாரணத்திற்கு ஒரு உலகவரைபடத்தில் இதே செய்திகளைக் குறிப்பிட, வண்ணங்கள் கொண்டும் அட்ச, தீர்க்ககோடுகளின்வழியாகவும் வரைகோட்டுகளின்வழியாகவும் மேலே சொன்ன உதாரணத்தில் உள்ள சேதிகளையும் பொதிக்கமுடியும்.  ஒரு பொருளின்பண்பைக் காட்ட வார்த்தைகளைக் கொண்டும், எண்களைக் கொண்டும் விசயத்தைப் பரிமாறிக்கொள்வது போல், ஒரு பொது மொழிவழியாகப் பரிமாறிக்கொள்ள இடவியல் பயன்படுகிறது.  முப்பரிமாண தரைபரப்பை/மலை முகட்டை, ஒரு இருபரிமாணத்தாளில் வரையும்போது, வரைகோடுகளைக் கொண்டு மலையின் உயரத்தைக் குறிப்பிட முடியும்.  உதாரணத்திற்கு, ஒரு மலையில், தரைபரப்பில் இருந்து 100 மீட்டர் உயரத்தில் தேநீர்க்கடையும் 200 மீட்டர் உயரத்தில், சுற்றுலாத்துறைஅலுவலகமும் அம்மலைமீதில் உள்ளதெனில், தாளில் குறிப்பிடும் போது 100 மீட்டர் அளவுக்கான வரைகோட்டினை வரைந்து தேநீர்க்கடையை அதனுள்ளும், 200 மீ அளவுக்கான வரைகோட்டினை வரைந்து அலுவலகத்தையும் குறிப்போம்.

PoincareSphere-Optics-TriangularPath.png

சுழல் அல்லது ஒளித்துகளின் சுழல் தன்மையை ப்ளாக் அல்லது போன்கரெ கோளத்தில் பொதியச் செய்து, அச்சுழலின் மாற்றங்களையும் காண்பிக்கும் படம்

இதைப் போல், ஒரு பண்பைக் குறிக்க இன்னொருப் பரிமாணத்தில் இன்னொருப் பண்பாகக் குறிப்பிடவியலக்கூடிய அமைப்பும் இடவியல் கோட்பாட்டிலுள்ள வசதி ஆகும்.  இடவியல் இடத்தை மட்டும் குறிப்பிடுவதற்கு பயன்படுத்தப்படுவதில்லை,  எந்தவொருப் பண்பையும் இதன் மூலம் குறிப்பிடப் பயன்படுத்தமுடியும். உதாரணத்திற்கு எலக்றானின் சுழற்பண்புகள் முப்பரிமாண உலகில் அளக்கப்படவேண்டியவை.  அவற்றை அளந்துக் குறிப்பிடும் பொழுது, எல்லையில்லா பரிமாணங்கொண்ட ஹில்பர்ட் வெளியில் குறிப்பிடமுடியும். அரை-சுழலெண் கொண்ட ஒரு எலக்றானின் பண்பை, இருபரிமாண ஹில்பர்ட்வெளியில் அவ்வெலக்றானின் பண்புநலன்கள் சிதையாமல் குறிப்பிடமுடியும்.  இவ்விருபரிமாண இல்பர்ட் வெளி, நாம் மனக்கண்ணால் காண்பதற்கு இன்னும் சிரமமாய் இருக்கலாம், அதனால், இப்பண்புகளை ஒரு முப்பரிமாணக் கோளத்தின் (2-Sphere S^2 or 3-Ball B^3) மேல் பொதித்து அதன் நடவடிக்கைகளைக் கண்காணிக்கவும் உய்த்துணரவும் வசதியாக இருக்கும்.

இம்மாதிரி இடவியல் கோட்பாடுகளைக் கொண்டு பலவகையான விசயங்களை அறியமுடியும். அதே போல, இடவியலைக் கொண்டுக் காணும் பொழுது, நாம் காபி அருந்தும் கோப்பையும், உளுந்துவடையும் ஒரே வடிவம் கொண்டவை ஆகிவிடும்.   நம்முடைய கால்சட்டையும், வடையைச்சுடும்போது ஒன்றையொன்று ஒட்டிக்கொண்ட இரு உளுந்துவடைகள் எப்படியிருக்குமோ அந்தவடையும் வடிவத்தில் ஒன்றாகிவிடும்! இதனால், ஒரு வசதி என்னவெனில், உளுந்துவடை (S^1 \times S^1) மாதிரியான அமைப்பைப் பற்றி நாம் நன்றாக அறிந்திருந்தால், கோப்பிக்கோப்பை போன்ற கடினமான அல்லது ஒழுங்கில்லா வடிவங்களின் தன்மையினை ஆராய்ந்து கொள்ளமுடியும்!

topology.png

இடவியற்தத்துவப்படி ஒரேவடிவங்கொண்டவை:                 1. கோப்பை (பிடியில்லாதது)யும் கோளமும் 2. பிடியுள்ளக் கோப்பையும் வடையும் 3. காற்சட்டையும் வடைகளும்

இடவியல் கோட்பாடு, கிராஃப் கொள்கை, முடிச்சுகளின் கோட்பாடு போன்றவையனைத்தும், இயற்பியலில் வெவ்வேறு கட்டமைப்பின் மூலமும் காணலாம்.

சீரான ஒழுங்குகள் (broken symmetry)  உடைபடும் புலங்களில் திண்பொருண்மப் புலமும் ஒன்று.  இயற்பியல் விளைவுகளைக் காணும்பொழுது வழமையானக் கணக்குமுறைகள் பயன்படாமல் போகவும் நிறைய வாய்ப்புகள் உள்ளன. அம்மாதிரித்தருணங்களில் விளங்கிக் கொள்ளவும் கணக்கிடவும் இம்மாதிரியான வழிமுறைகள் பயன்படுத்தப்படுகின்றன. காலம்-வெளி, இழைக் கோட்பாடு, குவாண்டம் ஈர்ப்பியல், குவாண்ட பொருண்மவியல் — மீக்கடத்தியியல், மீப்பாய்மவியல், குவாண்டக் கணினியியல் போன்றத் துறைகளில் இடவியற்கோட்பாடு பெரும்பாலும் பயன்படுத்தப்படுகிறது.

மீப்பாய்மம் (Superfludity), மீக்கடத்துதிறன் (Superconductivity) உதாரணங்கள்

உதாரணத்துக்கு குவாண்ட திண்மவியலுக்குத் தொடர்புடைய, மீப்பாய்ம, மீக்கடத்தி விசயங்களைக் காணலாம்.  நீர்ம ஹீலியம் (^3He) என்பது, 4K (~ -270 டிகிரி செல்சியஸ்)அளவுக்கு குறைவான வெப்பநிலையைக் கொண்ட நீர்மம், நீர்மம் என்றாலேயே அதற்கு விழுவிழுப்புத் தன்மை என்ற ஒன்று உண்டு. ஒரு பாத்திரத்தில் நீரை ஊற்றினால், அது அப்பாத்திரத்திலேயே இருப்பதற்கும் விழுவிழுப்புத்தன்மை தான், ஒருவகையில் காரணம். ஆனால் நீர்மஹீலியத்தை ஒருப் பாத்திரத்தில் ஊற்றி வைக்கும்பொழுது, அது இருக்கும் பாத்திரத்தின் சுவர்களின் வழியாக ஏறி, புவியீர்ப்புவிசையையும் தாண்டி, வழிந்தோடும் தன்மை கொண்டவை.   இதன் பொருள் என்னவெனில், உராய்வைப் போன்றதொரு ஆற்றல்பரிமாற்றத்தில்  வீணாகும் உபரியாற்றல், நீர்மத்தில் விழுவிழுப்புத்தன்மை, இல்லையென்பது!  அதாவது, சுழற்றிவிட்ட பம்பரம் என்றும் நிற்காமல் சுற்றிக் கொண்டேயிருந்தால், எப்படியிருக்குமோ அப்படியானது இது.


நாம் பொதுவாகக் காணும், ஆற்றில் உண்டாகும் சுழல் என்பது வெவ்வேறு திசைவேகத்தில் நீரோட்டங்கள் கலக்குமிடத்தில் உண்டாவது, இதேப் போன்றதை, ஒருக்கோப்பையில் உள்ள நீரை கரண்டியால் சுழற்றும் போதும் உண்டுபண்ணலாம். ஆற்றில், வெவ்வேறு நீரோட்டங்களின் திசைவேகமாற்றம் இருக்கும்வரை சுழலிருக்கலாம், கோப்பையில் உண்டாகும் சுழலும் கரண்டியை விட்டு சுழற்றுவதை நிறுத்திய சிறிதுநேரத்தில்தணியும்.  ஆனால், மீப்பாய்மமாகக் கருதப்படும் நீர்மஹீலியத்தில் –உராய்வைப் போன்று நீர்மங்களில் செயல்படும்– விழுவிழுப்புத்தன்மை இல்லாதநிலையில், தொடர்ந்து சுழலை தன்னுள் வைத்திருக்கும்,  போன நூற்றாண்டின் மத்தியில், இயற்பியற்றுறையில் இது போன்ற விளைவுகள் மிகப்பெரிய சவாலாக இருந்தன.

சரி, சுழல் என்பது என்ன, ஒரு பெரிய பரப்பில், ஓரிடத்தில் மட்டும் ஒழுங்குமாறிய நிலை, ஆக அவற்றைக் குறிக்க வெக்டர்புலங்களைப் பயன்படுத்தலாம், ஏனெனில், சுழல் என்பது ஒருவகையான விசை, ஆனால் அவ்விசை, இடத்திற்கு தக்கன வேறுபட செய்யும் ஒன்று. ஆகவே தான், சுழலுக்குள் மாட்டியவுடன் ஆற்றுக்குள் பொருட்கள் செல்வதில்லை, சில சுற்றுகள் சுற்றிவிட்டு பின் ஆற்றுக்குள் மூழ்கடிக்கப்படுகிறது. இந்த மொத்தநிகழ்வையும் இருபரிமாணத்தாளில் வரையவேண்டும் என்றால், நாம் என்ன செய்வோம்?  மொத்தப்பரப்பில் சுழல் உள்ள இடத்தில் மட்டும் சிறு வெக்டர் சுழல்களினால் குறிப்பிடமுடியும். இப்படி வடிவியற் நுண்கணிதம் கொண்டு பார்க்கலாம்.  சரி, திரும்பவும் சுழலுக்குள் செல்வோம்.

சாதாரண ஒரு சுழலுக்குப் பதில், இரு சுழல்களை அருகருகே உண்டுபண்ணினால், அவை மிகவும் அற்புதமாக, தனியாக உள்ளச் சுழல்களை விடவும் அதிகநேரம் உள்ளதைக் காணவியலும். இதே போன்றத் தன்மையினை, மீக்கடத்தியிலும் காணமுடிந்தது.  எலக்றான்கள் என்பவை, எதிர்மிந்தன்மையுடையவை, அதனால் அருகில் வருங்கால், ஒன்றையொன்று விலக்கும் தன்மைகொண்டவை.  ஆனால், மீக்கடத்தி நிலையில் –மீக்குறைவான வெப்பநிலையில்– எலக்றான்கள் ஒன்றையொன்று கைகோர்த்து, கூப்பர் ஜோடிகளாக இணையாக மாறுகின்றன.  கூப்பர் ஜோடிகளான உடன் அப்பருப்பொருள் மீக்கடத்தியாக மாறும். மேலோட்டமாகக் கூறும்பொழுது, இவ்வாறு தாழ்வான வெப்பநிலையில் மீக்கடத்திகளாக இருக்கும் பல உலோகங்கள், அறைவெப்பநிலையில் மின்னோட்டத்தைக் கடத்தாப் பொருட்களாக -insulators- இருப்பன! ஆக, இங்கே கடத்தாப் பொருளிலிருந்து மீப்பெரும் கடத்தியாக, சம்பந்தமேயில்லாத நிலைக்கு நிலைமாற்றம் ஏற்படுகிறது.  இது போல் நிலைமாற்றம் ஏற்படும் பொழுது, பெரும்பாலும் சீரொழுங்குநிலை உடைபடும்.

ஹால் விளைவு

HallCkt.png

ஒரு கடத்தியில் அல்லது குறைகடத்தியில், மின்னோட்டத்தை செலுத்திவிட்டு, மின்னோட்டத்தின் திசைக்கு செங்குத்தாக, குறுக்காக மின்னழுத்த வேறுபாட்டை அளந்தால் என்னவாகும்? பொதுவாக மின்னழுத்த வேறுபாடு இருக்கக் கூடாது.  ஏனெனில் மின்னோட்டத்தை ஒரு உலோகக்கடத்தியில் அனுப்பும் பொழுது, எங்கேத் தொட்டாலும் ஷாக் -மின்னதிர்வு ஏற்படும். ஆனால், ஹால் விளைவின் சோதனை அமைப்பில், கடத்தியின் பரப்புக்கு செங்குத்தாக, காந்தப்புலத்தை வைக்கும்பொழுது, கடத்தியின் குறுக்காக ஒரு மின்னூட்டங்களின் (charge) ஓட்டமானது காந்தப்புலத்தால் லோரன்ஸ் விசையினால்  (\vec{F} = e \vec{E} + e \vec{v}\times \vec{B})மாற்றப்பட்டு ஒரு பக்கமாக ஒதுங்கும், இதனால், ஒரு பக்கத்தில் மட்டும் மின்னூட்டம் அதிகமாகிவிடும், இம்மின்னூட்ட வேறுபாட்டால், மின்னழுத்தவேறுபாடு உண்டாகும்.  காந்தப்புலத்தின் சக்தி, திசை இவற்றைப் பொறுத்து மின்னழுத்த மாறுபாடு அமையும்.

சரி, பொதுவாக, ஒரு பொருளின் விலையைக் குறிப்பிடும் போழ்து, ஒரு மாம்பழத்தின் விலை 2 உரூபாய் எனில், 10 பழங்களின் விலை 20 ஆகும். 20 பழங்களின் விலை 40 என நேரடியாகப் எண்களைப் பெருக்கிக் கொண்டு போகலாம். ஆனால், மொத்தவியாபாரி வாங்கும் போது இப்படி வாங்கியிருக்கமாட்டார் தானே, அதாவது ஆயிரம் பழங்களின் விலை 2,000 ஆக இருக்காது, அதாவது அதன் மடங்கில் இருக்கப்போவதில்லை. ஆக, மொத்தவியாபாரியின் கணக்குக்கும் நுகர்வோரின் கணக்கும் ஒன்றாக இருப்பதில்லை, அதற்கான காரணிகள் பல்வகைப்பட்டவை.

அதே போல், ஒரு விசயம் ஒரு பரிமாணத்தில் ஒரு மாதிரி நடந்தால், அதே விளைவு, இரு பரிமாண பருப்பொருளில் அதன் இருமடங்கிலோ, இல்லை ஒருபரிமாணத்தின் தன்மையைப் பொறுத்தமாதிரியோ அமையாமல் மொத்தமாகவே, வேறுமாதிரியாகவும் அமைய வாய்ப்புகளுண்டு.

கூப்பர் இணை, ஜோசப்சன் சந்தி போன்ற மீக்கடத்தி அமைப்புகளிலும் ஹால் சோதனைகளிலும், ஒரு தளத்தில் அல்லது தகட்டில் நடப்பவை.  ஆனால் நம் சோதனைக்குரிய பொருள் தடிமனாக ஆக,  மடங்குகளில் அல்லாமல் மாறுவது எப்படி என்பதை சில உதாரணங்கள் மூலம் காண்போம்.

குவாண்டம் ஹால்விளைவு

சரி, மென்பட்டையாக, இருபரிமாணத்தில் இருக்கும் ஒரு கடத்திக்குத் தான் பார்த்தோம், இதுவே, கடத்தி தடிமனானால்? எதிர்பார்க்கப்படும் விளைவு, நுகர்வோர் வாங்கும் மாம்பழக்கணக்காக நேரடி கணக்கீடாக இருக்காது.  ஏனெனில், காந்தப்புலம் திசை சார்ந்தது, அதனால், ஹால் விளைவில், கடத்திக்குள்ளே வெவ்வேறு திசைகளில் மின்னூட்டம் வெவ்வேறு அளவுகளில் செலுத்தப்படும்.  இதனால் கடத்தியின் கடத்துத்திறன் வெகுவாகப் பாதிப்படையும். இது மேம்போக்காகப் பார்க்கும்பட்சத்தில் இவை இவ்வாறு நிகழ்ந்தால் பிரச்சினையில்லை.  ஆனால், காந்தப்புலத்தின் தன்மைக்கேற்ப ஒருசேர மாறாமல், திடீர் திடீரென கடத்தும்திறன சில காந்தப்புல அளவுகளுக்கு ஒரு மாதிரியும், அதிலிருந்து சிறிது பிசகினாலும், மிந்தடை அதிகமாகவும் மாறுவது, வியப்பானவொன்றாக இருந்தது. குவாண்டவியலில் தான், இம்மாதிரி, ஒரு குவாண்டத்துகளின் தன்மை, குவாண்டமாக்கம் செய்யப்படுவதால், ஒரு அணுவின் அல்லது அணுத்துகளின் சக்தி தொடரளவுகளாக இல்லாமல், குறிப்பிட்ட அளவு மட்டுமே அமையும் சாத்தியம் உண்டு. ஆக, இம்மாதிரி ஹால் விளைவுகளிலும், அதன் நுட்பத்தை அறிந்து கொள்ளும்பொருட்டு, குவாண்டவியல்கொள்கைகளைக் கொண்டு இம்மாதிரியான பருபொருட்களைப்பற்றி ஆய்வுசெய்யப்படும் பொழுது, இவை குவாண்டம் ஹால் விளைவுகள் கண்டறியப்பட்டன.  அம்மாதிரியான பொருண்மங்களுக்கு ஹால் கடத்துத்திறனானது இயற்கையின் மாறிலிகளில் ஒன்றான \hbar டிராக் அல்லது மாற்றமடைந்த பிளாங்க் மாறிலியின் அளவுகளில் இருந்தது.

குவாண்டச்சுழலில் ஹால் விளைவு (Quantum spin Hall effect), இடஞ்சார் திண்மவியல் (Topological matter)

சரி, மின்னோட்டம், எலக்ரானால் ஆனது எனும் பொழுது, எலக்றானுக்கு இருக்கும் பிறபண்புகளான, சுழற்பண்பையும் இது போல பார்த்தால், என்னவாக இருக்கும் எனப் பார்த்தபொழுது, ஹால் விளைவின் தன்மை, வேறுமாதிரியான பருப்பொருளின் தன்மைக்கு அடிகோலியது, காந்தப்புலமும், எலக்றானின் சுழலும் ஊடாடி புதுவகையானத் சுவிட்சு/நிலைமாற்றிகளைப் போல செயல்படுவதைக் காண முடிந்தது.  காந்தப்புலம் இல்லாமலும் ஹால்விளைவுகளைக் காண நேர்ந்தது!  இது மிகவும் ஆச்சரியப்படவைக்கும் விசயம் ஆகும்.

இதுமாதிரி அதியுயர் ஆற்றலியலிலும் துகளியற்பியலிலும் (high energy physics) குவாண்டப் பொருண்மவியலிலும் சீரொழுங்குநிலை உடைபடும் இடங்கள் நிறையவேவுண்டு.  ஆயினும்  கடத்தியின் மேற்பரப்புகளில் உள்ள மாறுபாடுகளுக்கேற்ப, விளைவுகள் ஏற்படுவது, சீரொழுங்குநிலையைத் தக்கவைத்துக் கொள்ளும்நிலையில் கூட நிலைமாற்றங்கள் ஏற்படுவதை, 2005ஆமாண்டுவாக்கில் கோட்பாட்டளவில் கண்டறிந்தனர்.

insulator

கடத்தாநிலையில் இடஞ்சார்ப் பண்புள்ளக் கடத்தாப்பொருள் சாதாரணக் கடத்தாபொருளைப் போல் உள்ளது.

உதாரணத்திற்கு, ஒரு கடத்திக்குள் எலக்றான் செல்லும் வழியில் ஏதாவது பழுதோ அல்லது வேறு அணுக்களோ மாசுகளோ இருந்தால், எலக்றான் சிதறும், இவ்வாறு சிதறினால், இயக்கவாற்றல் வெப்ப ஆற்றலாக மாறி வீணாகும்.  ஆனால் குவாண்டம் விளைவுகளால்,  திண்மங்களில் இம்மாதிரியானச் சிதறல் ஏற்படுவதில்லை, இது முடிச்சுக்கோட்பாட்டின் படி ஏற்படும் எலக்றானின் குவாண்டநிலைகளின் மாற்றங்களாக விளக்கப்படுகிறது.   இடவியல் கோட்பாடுகளின்படி சீரொழுங்குநிலைசார்ந்த தன்மை ஆராயப்படுகிறது.

QHE.png

இடஞ்சார் பண்புள்ள கடத்தாப்பொருள்:  நடுவில் கடத்தாபொருளாகவும், ஆனால் சோதனைத்துண்டின் ஓரங்களில் கடத்தியாகவும் உள்ளது.

ஒரு கடத்தாப் பொருள், அதன் கடத்தாநிலைக்குக் காரணம், அணுக்கள் தன் கடைசிவட்டப்பாதையில் உள்ள எலக்றான்களை கடத்தும் வல்லமைக்கு அனுப்பவியலாநிலையில் இருக்கும்.  ஆனால், ஒரு இடஞ்சார் திண்மப்பண்புள்ளப் கடத்தாப் பொருள்கூட காந்தப்புலத்தில் வைக்கும்பொழுது, அணுவின் சுழல்-சுற்றுப்பண்புகளின் ஊடாட்டத்தால் (Spin-Orbit coupling), கடைசி சுற்றுப்பாதையில் இருக்கும் எலக்றான்கள், தன் பாதையைத் தவிர்த்து, அந்தப் பொருளின் ஓரங்களில் மட்டும் முன்னேறிச் செல்லும்.  இதனால் அப்பொருளுக்கு அதன் ஓரத்தில் மட்டும் கடத்துந்திறன் உண்டாகிறது.

DiracCone1.png

இதில், எலக்றானின் சுழல்தன்மையினைப் பொறுத்து, எலக்றானின் ஓட்டம் அமையும்.   சரி, இது இருபரிமாணத் தகடு, இதுவே, முப்பரிமாணமானால், என்ன ஆகும்?!  இருபரிமாணத்தில் ஓரங்களில் கடத்துந்திறன் உண்டாவது போல, முப்பரிமாணப் பருப்பொருளில், அதன் மேற்பரப்புகளில் கடத்துந்திறன் உண்டாகிறது. பொதுவாக, குறைக்கடத்திகளில் (semiconductors)  அணுக்களில் நிறைச்சுற்றுவட்டப்பாதையில் உள்ள எலக்றான்கள், Fermi Level எனும் அளவைக் கடந்து  கடத்தும் எலக்றான்களாக மாறுவதற்கு, இரண்டு நிலைகளுக்கும் நடுவே ஒரு ஆற்றல் வேறுமாடு உண்டு, அந்த ஆற்றல் வேறுபாட்டைக் கடக்க, மின்னழுத்தத்தைத் தரும்பொழுது, கீழுள்ள கடைச்சுற்றுப்பாதையில் உள்ள எலக்றான்களுக்கு ஆற்றல் கூடி, அதற்கு வேண்டிய குவாண்ட ஆற்றலைப்பெறும்பொழுது,  தாவிக் கடத்த ஆரம்பிக்கும்.   இதை, ஆற்றல்-உந்த வரைபடத்தில் குறிப்பிடும் போது,  வேலன்ஸ் பட்டையும் கண்டக்ஷன் பட்டையும் ஒன்றின்மேல் ஒன்றாக அமையுமாறுக் குறிப்பிடுவர்.  ஆனால், மேலுள்ளப் படத்தில், தனித்தனிப் பட்டைகளாக, ஆற்றல்வேறுபாட்டுடன் இருக்கும் போதும் இந்த ஓர குவாண்டநிலைகள் கடத்த ஆரம்பித்ததை, வெளிர்நிலக் கோடுக் காண்பிக்கிறது.   அதே முப்பரிமாணத்தில், கூம்பு  வடிவில் கடத்தும் எலக்றான்களின் தன்மை அமைகிறது.  இதை கிராஃபீன் போன்ற பருப்பொருட்களில் டிராக் கூம்பு (Dirac cone), அதாவது அம்மாதிரியான பருப்பொருட்களில் உள்ள எலக்றான் டிராக் சார்பியல் குவாண்ட சமன்பாட்டினையொட்டி இயங்கும்.  சரி, அதை இன்னொரு நாளில் காணலாம்!

குவாண்டம் சுழல்களின் தன்மை, எப்பொழுதும் இடவியல் கோட்பாட்டின்படி அமைவதையும் ஹால்டேன் அவர்களின் கணக்கீடுகள் காண்பித்தன. சுழல்களை குறிப்பிட்ட தூரத்தில் சங்கிலிக்கண்ணிகளை போல் வைத்தால் சிலவகையான சுழலெண்களைக் கொண்ட சங்கிலிகள் இடவியல்தன்மைகளைக் கொண்டதாக இருந்தன. இதன் பிரகாரம், எவ்வகையான வெளித்தாக்கங்கள் (காந்தப்புலம்) ஏதும் இல்லாமலேயே ஹால்விளைவுகளைக் காணவும் வாய்ப்புகள் உள்ளது என அறியப்பட்டது.

ஒருதிசையில் மின் தடையாக செயல்படும் ஒரு பருப்பொருள் இன்னொருதிசையில் கடத்தியாக இருக்க முடியும்.  இதுமாதிரியான கடத்தியின் திசை, குவாண்டச்சுழல்களின் நிலை போன்றவற்றால் உருவாகும் நிலைமாற்றங்கள், மரபு எலக்றானியலிலும் சுழல் எலக்றானியலிலும் குவாண்டக் கணினிகளிலும் மிக முக்கிய பங்குவகிக்கும்.

மூத்தோர் பெருமை, தடுமாறும் அறிவியல் மற்றும் கணித வரலாறு

வர வர நம்மாட்களிடம் முன்னோர்களின் பெருமைகளையெடுத்துச் சொல்லவே பயமாகத் தான் உள்ளது. பார்த்தியா… என ஆரம்பித்துவிடுகிறார்கள்.. விவசாய விஞ்ஞானியான நண்பர் பிரபு  கணக்கதிகாரம்[1] பற்றியத் தகவலைப் பகிர்ந்திருந்தார்.   அவர்தம் பகிர்வுகள் எப்பொழுதும் அலறும் அறிவியல் உண்மைகளோடும் உசாத்துணைகளோடும்  எக்காளத்துடனும் நையாண்டியுடனும் எள்ளலும் துள்ளலும் தூக்கலாய் இருக்கும்.   அடிப்படையில் நான் புத்தர் காலத்து தத்துவங்களிலேயே உழன்று கொண்டிருப்பவனாயினும், என்னுடையப் பார்வை, ஒரு நவீன கட்டமைப்பு குவாண்ட இயற்பியலாளனுடையது (Foundational quantum physicist).  மூத்தோர் பெருமை, மூத்தோர் ஆய்வின் தற்காலத் தேவை என சரியான அளவீட்டைத் தேட வேண்டிய அவசியம் எல்லா அறிவியலாளர்களுக்கும் உள்ளது.   இருந்தாலும், தற்பொழுது அறிவியலுக்கு ஸ்வய சேவகம் செய்பவர்களால் பெரும் தலைவலியாய் உள்ளது.  இவர்களின் ஸ்வயம் பாகத்தால் முன்னோர் விசயங்களின் மேல் வெறுப்பு மட்டுமே உண்டாகும்.  இக்கட்டுரையில் குறிப்பிட்டிருக்கும் விவாதத்தில் இதை பேராசிரியர்கள் செயபாண்டியனும் செல்வகுமாரும் குறிப்பிட்டிருந்தனர்.  இருக்கட்டும்.

ஃபிபனாக்சி விகிதம்

சற்று கூர்ந்து கவனித்தால், இயற்கையில் பெரும்பாலும் எதிரொளி/லிக்கப் படும் தெய்வீக விகிதம் என அழைக்கப்படும் பிபனாக்சி விகிதத்தை (Fibonacci or divine ratio \varphi=\frac{1\pm\sqrt{5}}{2}) எளிதாகப் பிடிக்கலாம், அவ்வழி செல்கையில், தொடர் பின்னங்கள் (Continued fraction) தானாய் வந்து அமர்ந்து கொள்ளும், தொடர் பின்னங்களை பலா முட்களின் அமைவை வைத்தும் காணவியலலாம் (இது ஓர் அனுமானமே, அனுமானமே, அனுமானமே…).

\varphi =1+ \cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{\ddots}}}}

ஆனால், சுளையின் கணக்கு, விதைகளின் கணக்குக்கு விவசாய ஆன்றோர்களால் தான் பதில் சொல்ல முடியும்.  அதே நேரம், விதைகள்/சுளைகளும் முட்களைப் போல், அழகுவழி அமையும் பட்சத்தில், சூத்திரம் அமைப்பது மிக எளிது, அதுவும் இம்மாதிரி பயன்பாட்டுக் கணக்குகள், நம்மாட்களுக்கு பலாச்சுளை! அழகியலோடு இயற்கையின் நுட்பமும் சேர்ந்தது ஆதலால், அதுவொரு குத்துமதிப்பான அளவைத் தர வாய்ப்புகள் அதிகம். (முடிவிலா மின் சுற்றும், கொஞ்சம் ஜனரஞ்சக திண்ம அறிவியலும்! இக்கட்டுரையில் மின்சுற்றுகளிலும் மற்ற இயற்பியல் அமைவுகளிலும் பிபனாக்சி விகிதத்தைக் காண முடிவதைக் காண்பித்திருந்தேன்.)

சரி கண்டுபிடித்துவிட்டோம்… அதற்கு அடுத்த படி என்ன?  சுளை எண்ணிக்கை அதிகப்படுத்தலாமா அல்லது இயற்கையை அறிவதில் அடுத்தபடிக்கு முன்னேறலாமா??  என்பதே அறிவியலைத் தூக்கிப் பிடிப்போரின் கேள்விகள்.  முதலில் ஒன்றைப் புரிந்து கொள்ள வேண்டும், அறிவியல் என்பது, கிபி 17 ஆம் நூற்றாண்டில் ஆகாயத்திலிருந்து, நியூட்டனின் தலையில் விழவில்லை.  அது எப்போதும் நம்முள் இயங்கிக் கொண்டேயிருக்கிறது,  நாம் மனிதராக இல்லாமல்,  அமீபாவாக இருந்தாலும்,  ஒரு ஒவ்வாத வேதிச் சூழ்நிலையை உணர்ந்துவிட்டால் உடனே அமீபாவான நாம் நகரத் துவங்குவதிலேயே, உடல் உந்துதலிருந்தே தேடல் ஆரம்பித்திருக்க வேண்டும்.  சரி இவ்வளவு கூட யோசிக்கத் தேவையில்லை.   முன்னோர்களே அவ்வளவு அறிவாக இருந்திருக்கிறார்களே, நமக்கு எங்கே போச்சு புத்தி எனக் கேட்டால், தேசத்துரோகி ஆக்கிவிடுகிறார்கள்.

ஒரு எடுத்துக்காட்டு

அதுவும் தேசபக்தர்களுக்கான மதஞ்சார்ந்த எடுத்துக்காட்டு, இந்தியாவில், சில பகுதிகளில் சப்த கன்னியர்/அட்ட மாதர் வழிபாட்டில், விநாயகி எனும் தேவதையைச் சேர்ப்பதுண்டு, அதை யாரோவொருவர் இன்ச்டாகிராமில் போட்டிருந்தார், அதற்கு ஒருவர், அதெப்படி விநாயகரைப் பெண்ணாக வரைந்து அவமானப்படுத்தலாம் என சண்டைக்கு வந்துவிட்டார்.   வேறு சிலர் அவ்வழிபாட்டு முறையை எடுத்துக்கூற.. பின் பிரச்சினை ஒருவாறுத் தணிந்தது..  இப்படியிருக்கிறது எல்லாம்..!  சரி அப்படியே இருந்துவிட்டுப் போகட்டும்..

இரண்டு விசயங்கள்:

  • முதலில் நாம்/இந்தியப் பண்பாட்டினர் தான், வந்தது போனது என வரையறையின்றி கடவுளராக்கக்கூடிய வல்லமையுள்ளோர் எனக் கூறுகிறோமே, புதிதாக ஒரு கடவுளை ஏற்கமுடியாதா என்ன?!
  • இரண்டாவது, தெரியாத விசயம் என ஒன்று இருக்க வாய்ப்பு உண்டு என யோசிக்கக் கூட முடியாதா, முன்னோர்கள் இதற்கு ஏதாவது சொல்லியிருப்பார்கள் என்று விடவும் முடியவில்லை..  அது தான் முன்னோர்கள் முட்டாள்கள் இல்லையென நீங்களே சொல்கிறீர்களே.  நீங்கள் சொன்னதையே நீங்கள் வழமை போல் முரண்படுகிறீர்கள் தானே!

பௌத்தயானர் சூத்திரம் –  விவாதத் தெறிப்பு!

திரும்பவொரு மூத்தோர் சொல் முதுநெல்லிக்கனி விளையாட்டு.   பௌத்தயானர் சூத்திரத்தைப் பற்றி எனக்கும் பேராசிரியர்கள் செல்வக்குமாருக்கும், செயபாண்டியனுக்கும் நடந்த விவாதங்களை[2] இங்கேக் காணலாம்.

பல தமிழ் முகநூலர்கள், பௌத்தயானரின் சூத்திரத்தையும் (ஹோமக் குண்டங்களின் அளவைக் கணக்கிடப் பயன்பட்டவை), பிதாகரஸ் சூத்திரத்தையும் ஒப்பீடு செய்துப் பகிர்ந்து கொண்டிருந்தார்கள்.  அதாவது பிதாகரஸ் சூத்திரத்தின் பெயரை எப்படி பௌத்தயானர் சூத்திரம் என மாற்றலாம் என கொஞ்ச நாள் முன்னர் இந்தியர்களின் அல்லது தமிழர்களின்-பெருமை விளையாட்டை விளையாடிக் கொண்டிருந்தார்கள்!

நானும் சில விளையாட்டுக் கணக்குகளை, இது சம்பந்தமாகப் போட்டு வைத்து மறந்துவிட்டேன், எதையோ தேடும் போது சிக்கியது! இன்னும் அழகுறவும், கணித அழகு செழிக்கவும் செய்யலாம்! ஆனால், அதை எதையுஞ் செய்யாமல், ஒரு பாமரன் போல ஒரு படத்தை இங்கே இடுகிறேன்!

ஒரு செங்கோண முக்கோணத்தின் அடிப்பக்கம், எதிர்ப்பக்கம், கர்ணம் என்பவற்றை முறையே a, b, c எனக் குறிப்பிடுவோம்.   பிதாகரஸ் தேற்றத்தின் படி, அடிப்பக்கத்தின் (a) இருபடியின் அளவீட்டையும் எதிர்ப்பக்கத்தின் அளவின் (b) இருபடி அளவையையும் கூட்டினால் அம்முக்கோணத்தின் கர்ணத்தின் (H_P) இருபடி அளவைத் தரும்.

பிதாகரஸ் சூத்திரம் : a^2 + b^2 = H_{P}^2 அல்லது \sqrt{a^2 + b^2} = H_{P}

பௌத்தயானர் சூத்திரம்: \frac{a}{2}+\frac{7}{8}b = H_{B} \,\, ;  a < b

இதில் பௌத்தயானரின் சிறப்பு,  அதுவொரு நேரியல் சமன்பாடு ஆகும்.  படிகள் அல்லது மடிகள் இல்லை.  ஆனால் மிக முக்கியமான விசயம்.   எந்தப் பக்கம் சிறியதாக இருக்கின்றதோ அதை a எனக் குறிப்போம், மற்றப் பக்கத்தை b எனக் குறித்தால்,  கர்ணத்தின் அளவை (H_B) இவ்வாறுப் பெறலாம் என்கிறார், பௌத்தயானர்.

இரண்டு சூத்திரத்துக்கும் உள்ள கர்ண அளவின் சிறுபிள்ளைத்தனமான  வேறுபாட்டின் அளவை H_{P}-H_{B} வைத்து வரைந்ததே, இந்த வண்ணப்படம்.   அதாவது சிவப்பு நிறம் பித்தாகரஸ் மற்றும் பௌத்தயானர் கர்ண அளவுகள் ஒன்றாக உள்ளதற்கான குறியீடு அவ்வளவே!  பிழைகளைப் பொறுத்து சிவப்பில் இருந்து நீலத்தை நோக்கிச் செல்லும்!

Bodhiyanar_Pythogoras.png

H_{P} - H_{B} கிடைஅச்சு – முக்கோணத்தின் அடிப்பக்கம், நேரச்சு – முக்கோணத்தின் எதிர்ப்பக்கம்

கிடை-நேரச்சுகள் இரண்டும், 1 லிருந்து 100 வரை செல்கின்றன! அவை செங்கோண முக்கோணத்தின் அடி அல்லது எதிர்ப்பக்கம்/ குத்துக் கோடுகளின் அளவுகளைக் குறிக்கிறது!

அதுவொருப் பயன்பாட்டு அளவிலாத் தொடர்பாகத் தான் காண வேண்டும்! அப்படத்தினை அணி-போன்ற வரைபடமாகப் போட்டிருந்தால் இரண்டு சூத்திரங்களின் படி பெறப்பட்ட கர்ண அளவீடுகளும்  ஒரே அளவினதாக இருக்கலாம். ( அதாவது,  H_{P} =H_{B});  ஆனால், இரண்டு அளவைகளும் ஒரே அளவினதாக இருப்பது தற்செயல் என  கணித நக்கீரனாக நாம் இருந்தால்..

இதே இருபடி-ஒருபடி வாய்ப்பாடுகளை ஒப்பிடுவதன் விளைவாய், தோராயக்கணக்கே நன்றாக இருக்கும் என இப்படியே நிறுத்தியும் விட்டேன்!

ஹோமக் குண்டத்தினை வடிவமைக்க பௌத்தயானர் பாடிவைத்தது அப்பாடல், ஆதலால், எல்லா அளவுகளையும் கணக்கில் எடுக்காமல், சில அளவுகளை மட்டுமே அவர் கருத்தில் கொண்டிருக்க வேண்டும்; அது  வசதிக்கான சூத்திரமாக மட்டுமேப் பரிந்துரைத்திருக்கப்பட்டிருக்க வேண்டும்!

எப்பொழுது எல்லாம்,  பிதாகரஸின் முவ்வெண் கோவைகளாக  (Pythagorean triples) இருக்கிறதோ சிவப்புநிறத்திற்குள் (படத்தில்) அவை வந்துவிடும், ஆனால் சில பிழைகளும் H_{P} \approx H_{B} அச்சிவப்பில் அடக்கம்! சிவனையே சினந்த மக்களின் மயக்கத்திற்கு இதுவுமொருக் காரணம்!

ஆதிசங்கரரின் ஶ்ரீசக்கரம் வரைவதற்கான சூத்திரம் மாதிரிதான் இதுவும்!  ஏன் இப்படியெனக் கேட்டால் அழகியல் கெட்டுவிடும், வேறு ஏதோ தெரியாதப் பண்புகளும் கெடலாம்!   ஆயினும் எல்லோரும் சொல்கிறார்களே, அதில் எவ்வளவு ஒத்து வருகிறது எனப் பார்த்தேன்!

தவிர, சில ஒத்துவரவில்லையெனினும் மற்றவை ஒத்து வராது என நினைப்பது, கோடலின் முழுமையற்றத்தன்மையில் அடங்கிவிடும்/விடலாம்! 😀 எண்ணியல் என்பது மிகுந்த சலிப்பையும் ஆச்சரியத்தினையும் ஒரு சேர ஊட்டும் தன்மையுடையது! அது மாதிரி ஏதாவதுத் தெரிகிறதா எனத் தேடியதன் விளைவே இக்கணக்கீடு.

எனக்கு இவை எல்லாம் — ஆகம விதிகள், சட்டுவ அளவுகள், சக்கர அளவுகள், போன்றவை –பயன்பாட்டுக்கானவற்றை மட்டும் நாம் மிகப் பிடிவாதமாக/வசதிகளுக்காக, வைத்திருந்ததன் விளைவோ என்னவோ!

இவ்விவாதத்தின் விளைவாக, ஜெயபாண்டியன் அவர்கள், பௌத்தயானர் சூத்திரத்தைப் பற்றிய சிறுகுறிப்பொன்றை வரைந்திருந்தார்.  அதை இங்கேக் காணலாம் [3].

அது மட்டும் இல்லாது,  அறிவியல் எப்பொழுதும், எவ்வளவு குழப்பமான சமன்பாடுகளைக் கொண்டிருந்தாலும், symmetry -போன்ற பண்புகள் சீராய் அமைந்து, சமன்பாட்டை எளிதாக்கிவிடும், ஆச்சரியம் என்னவெனில் சில விசயங்களில், இயற்கையும் நாம் எழுதியது போலவே, சீராய் இயங்குவதும்!    அது போல் இருபடியாய் இருப்பதை ஒருபடியாய் மாற்றுவதும் பல வகைகளில் நல்லதாக சில உதாரணங்களின் வழிக் காணலாம்!

சார்பியற் குவாண்டவியலில் நேரியலாக்கம்

நேரியல் பண்புகளோடு இருப்பது, எப்பொழுதும் நல்லது தான்!  சட்டச்சார்பிலா குவாண்டவியலின்  (non-relativistic  quantum mechanics) சுரோடிங்கரின் (Schrödinger) இருபடி சமன்பாட்டின் ஒழுங்கற்றத் தன்மையை,

[-\frac{\hbar^2}{2m} \nabla^2 + (E-V)] \psi(x,t) = -i\hbar \frac{\partial\psi(x,t)}{\partial t}

டிராக் அவர்கள், சட்டச்சார்பு கொண்ட குவாண்டவியலுக்கான நேரியற்சமன்பாடாக அல்லது ஒருபடிச் சமன்பாடு ஆக்குவதன் மூலம் தீர்வை எளிதாக மாற்ற விழைந்தார்!  முதலில் சுரோடிங்கரின் சமன்பாட்டை சார்பியலோடுக் கலந்தால் அது,

(-c^2 \hbar^2 \nabla^2 +m^2 c^4) \psi(x,t) =(-i\hbar \frac{\partial \psi(x,t)}{\partial t})^2  (இருபடி)கிளெயின்-கோர்டான் சமன்பாடு (Klein-Gordon Eqn) என அமையும்.

பின்பு நேரியற் அணிக் கோட்பாட்டின் மூலம்,  (-i \hbar \partial^\mu \gamma_\mu -mc )\psi = 0 என டிராக் சமன்பாட்டை எழுதலாம்.

(Dirac Equation \partial^\mu, \gamma_\mu என்பன முறையே 4(பரிமாண)-செயலிகள்,  டிராக் \gamma அணிகள் )

சமன்பாடுகளின் நுட்பங்கள் தற்பொழுது தேவையில்லாதது.  ஆனால் அதன் படிகளைக் காண்க.  டிராக் சமன்பாடு வெறும் ஒருபடிச் சமன்பாடு..  (^\mu என்பது படியல்ல.. அது வெற்றுக் குறி (Einstein Summation index or dummy index)).  இச்சமன்பாட்டின் மூலம், குவாண்ட இயற்கணிதத்தின் அடிப்படைக்கல் நாட்டப்பட்டது.

இந்த சமன்பாட்டின் விளைவால், பாசிட்டிரான் எனும் எதிர்துகள் உதித்தது!  இது எதிர்மத்துகளின் அடிப்படையை விதைத்தது! பாசிட்டிரான்,  எலக்றானின் எதிர்மத்துகள்!  அதாவது பாசிட்டிரானின் சக்தி–எதிர்ம அளவில் இருந்தது Negative energy — இது அவருடையக் காலத்தில், இயற்கைக்குப் புறம்பானவொன்று!  ஆயினும் எண்ணியல் தொடர்புகள் பல,  இயற்கையில், பற்பல விளைவுகளில் இருப்பதைக் காண முடிந்ததைப் போல், போஸ்-ஐன்ஸ்டைன் குளிர்வித்தலில் எதிர்ம சக்தியின் நிரூபணத்தை ஆய்வின் வழிக் கண்டறிந்துள்ளனர்.   இங்கு பயன்பாடு — கோட்பாடாக்கப் பட்டுள்ளது!

பேராசிரியர் செல்வக்குமார் உட்பதி தொகை மின்சுற்றுக் கணக்கீடுகளில் இருபடிகள் இல்லாமலும், வர்க்கமூலம் இல்லாமலும் பயன்படுத்த வேண்டியதைக் குறிப்பிட்டிருந்தார் [4].   அந்தத் தளத்தில் பௌத்தயானரின் சூத்திரத்தையும் விவாதித்துள்ளனர்!

பழங்கால விற்பன்னர்கள்

பாரதத்தின் பண்பாடு மற்றும் தேடலின் சேகரங்களைக் கற்றலின் பொருட்டு பிறநாட்டினர் பயணக்குறிப்புகளில் பகிர்ந்துள்ளதாய் வரலாறு உள்ளன.  அக்குறிப்புகளில் பல, மந்திர தந்திர அல்லது அப்பொழுது இருந்த மாயவித்தைகள் என நிறைய விசயங்களை சந்தேகக்கண் கொண்டு நோக்கினாலும், தத்துவம் சார்ந்த அறிவுப் பரிமாற்றங்கள் வெவ்வேறு அளவுகளில் நடந்துள்ளது உண்மை.   நாம் எப்படி கணிதத்தையும் அறிவியலையும் மதம் சார்ந்த அல்லது சடங்குகள் சார்ந்த ஒரு விசயமாக உருவாக்கினோமோ, உலகின் பிற பகுதிகளிலும் அக்கால அறிவியல் அதே அளவில் நடந்தேறியதையும் அவ்வப்போதுக் காண முடிகிறது.

நான் இவற்றைப் பார்த்துப் பூரிப்பதோ தவிர்ப்பதோ இல்லை, முடிந்தால் உடனே என்னவென்று ஆய்வேன், அல்லது கிடப்பில் கிடக்கும்!  ஆயினும், ஒரு வேலையை, நாம் தற்போது செய்வது போல், பழங்காலத்து ஆட்களால் செய்ய முடியாது அல்லது வேறு மாதிரி செய்வார்கள், அதே போல் தான் நவீன அறிவியலைக் கொண்டு காணும் நமக்கும் பழங்காலத்து ஆட்களைப் போல் சிந்திக்க முடியாது, ஆயினும் அதே மாதிரியான சிந்தனையின் முக்கியத்துவம் பார்க்கப்பட வேண்டுமா என்பது சூழலையும் தேவையையும் பொறுத்தது.

வரலாற்று ஆய்வுகளின் முக்கியத்துவம்

ஆனால், பெரும்பாலானத் தருணங்களில்,  பிரச்சினை என்னவென்றால், அவல் தின்பது போல் வரலாற்றை மெல்லுவது தான்.  அறிவியல் மற்றும் கணித வரலாற்றைப் பற்றி தற்போது உள்ள விஞ்ஞானிகள் கண்டுகொள்வதில்லை எனப் பலர் கவலை கொண்டுள்ளனர்.

ஏற்கனவே, அறிவியல் ஆய்வுகளை, பண்டைய, புதிய என வரையறைகளில் பெரும்பாலும், மேற்கத்திய தத்துவங்களிலேயே வைத்துள்ளனர்.  ஆசிய தத்துவங்கள் அடர்வான சாரங்களைப் பெற்றிருந்தாலும், அவற்றை ஏற்றுக் கொள்வதில் மிகப் பெரிய சுணக்கம் உள்ளது.   நேர்மையாக முன்னெடுத்துச் செல்வோரின் அளவுக் குறைவாய் இருப்பதே இதற்கு காரணம்.  சனரஞ்சகமாகவே, அரிஸ்டாட்டில், சாக்ரடீஸ் தத்துவப்பள்ளிகளைப் பற்றி பெரும்பாலானோருக்குத் தெரியும், ஏன் அரிஸ்டாட்டிலுக்கும் முந்தைய பள்ளிகள் கூட சனரஞ்சகமாக அறியப்பட்டுள்ளன!  ஆனால், மாவீரர், பௌத்தர், பாணினி, தக்கசீலப் பல்கலையின் அருமையைப் பற்றி நம்மவர்களுக்கேப் பெரிதும் தெரிவதில்லை.    அப்படி அறியக் கொணர்ந்தாலும்,  இன்ன அளவு என்றில்லாமல் பெரும்புகழ்ச்சிக்கு ஆட்படுத்துவது.. இல்லை, அவை எல்லாம் மதம் சார்ந்தவை என மேம்போக்காகப் பேசுவது என அறவே சம்பந்தமில்லாத எதிரெதிர் இரட்டை நிலைகளுக்குள் சிக்கிக் கொள்வதாக இருப்பது.

பெருமைக்குட்படுத்துதலோடு ஆய்வுக்குட்படுத்துதலும்!

உதாரணத்திற்கு, பிரையான் ஜோசப்சன் எனப்படும் இயற்பியலர், தனது முனைவர் பட்ட ஆய்வின் போது, கண்டறிந்த மீக்கடத்தி சந்தி (Josephson Junction) என்பதைக் கண்டறிந்தார், அது மிகப் பெரியக் கண்டுபிடிப்பு, அவருடைய 25 வயதிலேயே அதற்காக நோபல் பரிசைப் பெற்றார்!  ஆயினும், தற்போது அவருடையக் கட்டுரைகள் பெரும்பாலும், மனதையும் பருப்பொருளையும் (mind-matter) சார்ந்து எழுதும் ஆய்வுக் கட்டுரைகளை, பெரும்பாலானோர் ஒத்துக் கொள்வதில்லை.  ஆர்கைவ் (arXiv) எனப்படும், ஆய்வுக்கட்டுரைகள் எளிதாக எல்லோரையும் சென்றடையச் செய்யும் வகையில் உருவாக்கப்பட்டத் தளம் கூட, அவருடைய சிலக் குறிப்பிட்ட ஆய்வுகளை ஒதுக்கி வைக்கின்றன!  இதில் மூன்று விசயங்களை உணர வேண்டும்!

  1.  அவர் நோபல் பரிசு பெற்றவர் என்பதாலேயே அவருடையவை எல்லா ஆய்வுகளும் ஏற்கப்படவில்லை யென்பது. (நாம் உயர்வு நவில்பவர்கள், ஆயிற்றா?!! )
  2. அப்படி ஒதுக்கி வைப்பது சரிதானா என்பதைப் பற்றியும் விவாதங்கள் நடந்த வண்ணம் உள்ளன.  அதாவது
    •  ஆய்வின் போக்கை, தாம் கொண்ட அறிவை மட்டும் வைத்து, இது சரி அல்லது தவறு என்று சொல்வது சரிதானா என்பது.  அதாவது ஆய்வின் சுதந்திரத்தை அது பறித்துவிடும்.
    • அதற்கான வடிகாலைக் கட்டமைப்பது. (உதாரணம் viXra, அதாவது arXiv-இன் தலைகீழ்! ஆனால் பல முரணானக் கட்டுரைகள் உள்ளன இதில்!)
  3.  இன்னும் ஜோசப்சன்னின் மற்ற ஆய்வுகள் சரியாக அலசப்பட்டு பிரசுரிக்கப்படவும் செய்கிறது.

 

சங்கப்பலகை அனல் புனல்வாதங்கள்!

ஒவ்வொரு கலாச்சாரமும் ஒவ்வொரு மனிதருக்கான வரையறையை வைக்கிறது.  ஆனால், நம்மவர்கள் பெரும்பாலும், அடுத்த நாட்டினரின் பண்பாட்டு உளவியலுக்குள் தத்தம் தலைகளைப் புகுத்த முயற்சிக்கிறார்கள், அதுவும் மிகவும் ஆகவே ஆகாத விசயங்களில்!   அனல்வாதம் புனல்வாதம் என்பது உவமைகளாக இருந்திருந்தால்,  சங்கப் பலகை-பொற்றாமரைக்குளம் என்பவை எல்லாம்  அக்காலத்தைய, editorial board-இன் ஒப்புமைவடிவம்!  வாதங்கள் எல்லாம் தத்துவங்களின் அலசல் –சமூகத்தால் ஏற்கப்பட்ட வடிவத்தைத் தரும் peer-reviewing system.    எல்லாத் தத்துவப் பின்னணி கொண்ட கலாச்சாரத்திலும், இது போன்ற தராசுகள் இருந்திருக்கின்றன.   சில நேரங்களில், வரலாற்றுப் படிமங்கள் கூறுவது போல், அவை கொஞ்சம் கொடுமையாக, யோசிப்போருக்கு நஞ்சையும் புகட்டியிருக்கின்றன, கழுவிலும் ஏற்றியிருக்கின்றன, கல்லைக்கட்டிக் கடலிலும் இறக்கியிருக்கின்றன.

அரைகுறை முன்னோர் புகழ்ச்சியால், உண்மையான வரலாற்றை நாம் தொலைத்துவிடக் கூடாது.  இது முதல் படி, ஆனால், இது மட்டும் போதாது, சரியான வரலாற்றைப் பதிவும் செய்ய வேண்டும். மகிழ்ச்சியான விசயம் என்னவென்றால், பல விஞ்ஞான நண்பர்கள் கிரேக்கத்துக்கும் முந்தைய அறிவியலில் ஆர்வங்கொள்வதும் நடுநிலையோடு இந்திய அறிவியல் வரலாற்றைப் பற்றி பகிர்வதும் ஆகும், ஆனால் மிகக் குறைவான பேர்களே இவ்வேலையை செய்து வருகின்றனர். என்பதும், அவர்களின் பகிர்வுகள் எவ்வளவு சனரஞ்சகமாக எடுக்கப்படுகிறது என்பதைக் காணும் போது அது வருத்தத்திற்குரிய அளவிலேயே உள்ளது.

ஆனால் அறிவியலுக்கும் கட்டுக்கதைப் புனைந்து புல்லுருவியைப் போல் செய்திகளைப் பரப்பி உளுக்கச் செய்தல், கடைந்தெடுத்த முட்டாள்தனம்.

உசாவுத்துணைகள்:

[1] https://archive.org/details/balagzone_gmail

[2] https://www.facebook.com/photo.php?fbid=10207381186028991&set=rpd.1266837112&type=3&theater

[3] https://drive.google.com/file/d/0BzwpbxABzaV5V0lxS0dZeTFhOGM

[4] http://forums.parallax.com/discussion/147522/dog-leg-hypotenuse-approximation

[5] முடிவிலா மின் சுற்றும், கொஞ்சம் ஜனரஞ்சக திண்ம அறிவியலும்!