மூத்தோர் பெருமை, தடுமாறும் அறிவியல் மற்றும் கணித வரலாறு

வர வர நம்மாட்களிடம் முன்னோர்களின் பெருமைகளையெடுத்துச் சொல்லவே பயமாகத் தான் உள்ளது. பார்த்தியா… என ஆரம்பித்துவிடுகிறார்கள்.. விவசாய விஞ்ஞானியான நண்பர் பிரபு  கணக்கதிகாரம்[1] பற்றியத் தகவலைப் பகிர்ந்திருந்தார்.   அவர்தம் பகிர்வுகள் எப்பொழுதும் அலறும் அறிவியல் உண்மைகளோடும் உசாத்துணைகளோடும்  எக்காளத்துடனும் நையாண்டியுடனும் எள்ளலும் துள்ளலும் தூக்கலாய் இருக்கும்.   அடிப்படையில் நான் புத்தர் காலத்து தத்துவங்களிலேயே உழன்று கொண்டிருப்பவனாயினும், என்னுடையப் பார்வை, ஒரு நவீன கட்டமைப்பு குவாண்ட இயற்பியலாளனுடையது (Foundational quantum physicist).  மூத்தோர் பெருமை, மூத்தோர் ஆய்வின் தற்காலத் தேவை என சரியான அளவீட்டைத் தேட வேண்டிய அவசியம் எல்லா அறிவியலாளர்களுக்கும் உள்ளது.   இருந்தாலும், தற்பொழுது அறிவியலுக்கு ஸ்வய சேவகம் செய்பவர்களால் பெரும் தலைவலியாய் உள்ளது.  இவர்களின் ஸ்வயம் பாகத்தால் முன்னோர் விசயங்களின் மேல் வெறுப்பு மட்டுமே உண்டாகும்.  இக்கட்டுரையில் குறிப்பிட்டிருக்கும் விவாதத்தில் இதை பேராசிரியர்கள் செயபாண்டியனும் செல்வகுமாரும் குறிப்பிட்டிருந்தனர்.  இருக்கட்டும்.

ஃபிபனாக்சி விகிதம்

சற்று கூர்ந்து கவனித்தால், இயற்கையில் பெரும்பாலும் எதிரொளி/லிக்கப் படும் தெய்வீக விகிதம் என அழைக்கப்படும் பிபனாக்சி விகிதத்தை (Fibonacci or divine ratio \varphi=\frac{1\pm\sqrt{5}}{2}) எளிதாகப் பிடிக்கலாம், அவ்வழி செல்கையில், தொடர் பின்னங்கள் (Continued fraction) தானாய் வந்து அமர்ந்து கொள்ளும், தொடர் பின்னங்களை பலா முட்களின் அமைவை வைத்தும் காணவியலலாம் (இது ஓர் அனுமானமே, அனுமானமே, அனுமானமே…).

\varphi =1+ \cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{\ddots}}}}

ஆனால், சுளையின் கணக்கு, விதைகளின் கணக்குக்கு விவசாய ஆன்றோர்களால் தான் பதில் சொல்ல முடியும்.  அதே நேரம், விதைகள்/சுளைகளும் முட்களைப் போல், அழகுவழி அமையும் பட்சத்தில், சூத்திரம் அமைப்பது மிக எளிது, அதுவும் இம்மாதிரி பயன்பாட்டுக் கணக்குகள், நம்மாட்களுக்கு பலாச்சுளை! அழகியலோடு இயற்கையின் நுட்பமும் சேர்ந்தது ஆதலால், அதுவொரு குத்துமதிப்பான அளவைத் தர வாய்ப்புகள் அதிகம். (முடிவிலா மின் சுற்றும், கொஞ்சம் ஜனரஞ்சக திண்ம அறிவியலும்! இக்கட்டுரையில் மின்சுற்றுகளிலும் மற்ற இயற்பியல் அமைவுகளிலும் பிபனாக்சி விகிதத்தைக் காண முடிவதைக் காண்பித்திருந்தேன்.)

சரி கண்டுபிடித்துவிட்டோம்… அதற்கு அடுத்த படி என்ன?  சுளை எண்ணிக்கை அதிகப்படுத்தலாமா அல்லது இயற்கையை அறிவதில் அடுத்தபடிக்கு முன்னேறலாமா??  என்பதே அறிவியலைத் தூக்கிப் பிடிப்போரின் கேள்விகள்.  முதலில் ஒன்றைப் புரிந்து கொள்ள வேண்டும், அறிவியல் என்பது, கிபி 17 ஆம் நூற்றாண்டில் ஆகாயத்திலிருந்து, நியூட்டனின் தலையில் விழவில்லை.  அது எப்போதும் நம்முள் இயங்கிக் கொண்டேயிருக்கிறது,  நாம் மனிதராக இல்லாமல்,  அமீபாவாக இருந்தாலும்,  ஒரு ஒவ்வாத வேதிச் சூழ்நிலையை உணர்ந்துவிட்டால் உடனே அமீபாவான நாம் நகரத் துவங்குவதிலேயே, உடல் உந்துதலிருந்தே தேடல் ஆரம்பித்திருக்க வேண்டும்.  சரி இவ்வளவு கூட யோசிக்கத் தேவையில்லை.   முன்னோர்களே அவ்வளவு அறிவாக இருந்திருக்கிறார்களே, நமக்கு எங்கே போச்சு புத்தி எனக் கேட்டால், தேசத்துரோகி ஆக்கிவிடுகிறார்கள்.

ஒரு எடுத்துக்காட்டு

அதுவும் தேசபக்தர்களுக்கான மதஞ்சார்ந்த எடுத்துக்காட்டு, இந்தியாவில், சில பகுதிகளில் சப்த கன்னியர்/அட்ட மாதர் வழிபாட்டில், விநாயகி எனும் தேவதையைச் சேர்ப்பதுண்டு, அதை யாரோவொருவர் இன்ச்டாகிராமில் போட்டிருந்தார், அதற்கு ஒருவர், அதெப்படி விநாயகரைப் பெண்ணாக வரைந்து அவமானப்படுத்தலாம் என சண்டைக்கு வந்துவிட்டார்.   வேறு சிலர் அவ்வழிபாட்டு முறையை எடுத்துக்கூற.. பின் பிரச்சினை ஒருவாறுத் தணிந்தது..  இப்படியிருக்கிறது எல்லாம்..!  சரி அப்படியே இருந்துவிட்டுப் போகட்டும்..

இரண்டு விசயங்கள்:

  • முதலில் நாம்/இந்தியப் பண்பாட்டினர் தான், வந்தது போனது என வரையறையின்றி கடவுளராக்கக்கூடிய வல்லமையுள்ளோர் எனக் கூறுகிறோமே, புதிதாக ஒரு கடவுளை ஏற்கமுடியாதா என்ன?!
  • இரண்டாவது, தெரியாத விசயம் என ஒன்று இருக்க வாய்ப்பு உண்டு என யோசிக்கக் கூட முடியாதா, முன்னோர்கள் இதற்கு ஏதாவது சொல்லியிருப்பார்கள் என்று விடவும் முடியவில்லை..  அது தான் முன்னோர்கள் முட்டாள்கள் இல்லையென நீங்களே சொல்கிறீர்களே.  நீங்கள் சொன்னதையே நீங்கள் வழமை போல் முரண்படுகிறீர்கள் தானே!

பௌத்தயானர் சூத்திரம் –  விவாதத் தெறிப்பு!

திரும்பவொரு மூத்தோர் சொல் முதுநெல்லிக்கனி விளையாட்டு.   பௌத்தயானர் சூத்திரத்தைப் பற்றி எனக்கும் பேராசிரியர்கள் செல்வக்குமாருக்கும், செயபாண்டியனுக்கும் நடந்த விவாதங்களை[2] இங்கேக் காணலாம்.

பல தமிழ் முகநூலர்கள், பௌத்தயானரின் சூத்திரத்தையும் (ஹோமக் குண்டங்களின் அளவைக் கணக்கிடப் பயன்பட்டவை), பிதாகரஸ் சூத்திரத்தையும் ஒப்பீடு செய்துப் பகிர்ந்து கொண்டிருந்தார்கள்.  அதாவது பிதாகரஸ் சூத்திரத்தின் பெயரை எப்படி பௌத்தயானர் சூத்திரம் என மாற்றலாம் என கொஞ்ச நாள் முன்னர் இந்தியர்களின் அல்லது தமிழர்களின்-பெருமை விளையாட்டை விளையாடிக் கொண்டிருந்தார்கள்!

நானும் சில விளையாட்டுக் கணக்குகளை, இது சம்பந்தமாகப் போட்டு வைத்து மறந்துவிட்டேன், எதையோ தேடும் போது சிக்கியது! இன்னும் அழகுறவும், கணித அழகு செழிக்கவும் செய்யலாம்! ஆனால், அதை எதையுஞ் செய்யாமல், ஒரு பாமரன் போல ஒரு படத்தை இங்கே இடுகிறேன்!

ஒரு செங்கோண முக்கோணத்தின் அடிப்பக்கம், எதிர்ப்பக்கம், கர்ணம் என்பவற்றை முறையே a, b, c எனக் குறிப்பிடுவோம்.   பிதாகரஸ் தேற்றத்தின் படி, அடிப்பக்கத்தின் (a) இருபடியின் அளவீட்டையும் எதிர்ப்பக்கத்தின் அளவின் (b) இருபடி அளவையையும் கூட்டினால் அம்முக்கோணத்தின் கர்ணத்தின் (H_P) இருபடி அளவைத் தரும்.

பிதாகரஸ் சூத்திரம் : a^2 + b^2 = H_{P}^2 அல்லது \sqrt{a^2 + b^2} = H_{P}

பௌத்தயானர் சூத்திரம்: \frac{a}{2}+\frac{7}{8}b = H_{B} \,\, ;  a < b

இதில் பௌத்தயானரின் சிறப்பு,  அதுவொரு நேரியல் சமன்பாடு ஆகும்.  படிகள் அல்லது மடிகள் இல்லை.  ஆனால் மிக முக்கியமான விசயம்.   எந்தப் பக்கம் சிறியதாக இருக்கின்றதோ அதை a எனக் குறிப்போம், மற்றப் பக்கத்தை b எனக் குறித்தால்,  கர்ணத்தின் அளவை (H_B) இவ்வாறுப் பெறலாம் என்கிறார், பௌத்தயானர்.

இரண்டு சூத்திரத்துக்கும் உள்ள கர்ண அளவின் சிறுபிள்ளைத்தனமான  வேறுபாட்டின் அளவை H_{P}-H_{B} வைத்து வரைந்ததே, இந்த வண்ணப்படம்.   அதாவது சிவப்பு நிறம் பித்தாகரஸ் மற்றும் பௌத்தயானர் கர்ண அளவுகள் ஒன்றாக உள்ளதற்கான குறியீடு அவ்வளவே!  பிழைகளைப் பொறுத்து சிவப்பில் இருந்து நீலத்தை நோக்கிச் செல்லும்!

Bodhiyanar_Pythogoras.png

H_{P} - H_{B} கிடைஅச்சு – முக்கோணத்தின் அடிப்பக்கம், நேரச்சு – முக்கோணத்தின் எதிர்ப்பக்கம்

கிடை-நேரச்சுகள் இரண்டும், 1 லிருந்து 100 வரை செல்கின்றன! அவை செங்கோண முக்கோணத்தின் அடி அல்லது எதிர்ப்பக்கம்/ குத்துக் கோடுகளின் அளவுகளைக் குறிக்கிறது!

அதுவொருப் பயன்பாட்டு அளவிலாத் தொடர்பாகத் தான் காண வேண்டும்! அப்படத்தினை அணி-போன்ற வரைபடமாகப் போட்டிருந்தால் இரண்டு சூத்திரங்களின் படி பெறப்பட்ட கர்ண அளவீடுகளும்  ஒரே அளவினதாக இருக்கலாம். ( அதாவது,  H_{P} =H_{B});  ஆனால், இரண்டு அளவைகளும் ஒரே அளவினதாக இருப்பது தற்செயல் என  கணித நக்கீரனாக நாம் இருந்தால்..

இதே இருபடி-ஒருபடி வாய்ப்பாடுகளை ஒப்பிடுவதன் விளைவாய், தோராயக்கணக்கே நன்றாக இருக்கும் என இப்படியே நிறுத்தியும் விட்டேன்!

ஹோமக் குண்டத்தினை வடிவமைக்க பௌத்தயானர் பாடிவைத்தது அப்பாடல், ஆதலால், எல்லா அளவுகளையும் கணக்கில் எடுக்காமல், சில அளவுகளை மட்டுமே அவர் கருத்தில் கொண்டிருக்க வேண்டும்; அது  வசதிக்கான சூத்திரமாக மட்டுமேப் பரிந்துரைத்திருக்கப்பட்டிருக்க வேண்டும்!

எப்பொழுது எல்லாம்,  பிதாகரஸின் முவ்வெண் கோவைகளாக  (Pythagorean triples) இருக்கிறதோ சிவப்புநிறத்திற்குள் (படத்தில்) அவை வந்துவிடும், ஆனால் சில பிழைகளும் H_{P} \approx H_{B} அச்சிவப்பில் அடக்கம்! சிவனையே சினந்த மக்களின் மயக்கத்திற்கு இதுவுமொருக் காரணம்!

ஆதிசங்கரரின் ஶ்ரீசக்கரம் வரைவதற்கான சூத்திரம் மாதிரிதான் இதுவும்!  ஏன் இப்படியெனக் கேட்டால் அழகியல் கெட்டுவிடும், வேறு ஏதோ தெரியாதப் பண்புகளும் கெடலாம்!   ஆயினும் எல்லோரும் சொல்கிறார்களே, அதில் எவ்வளவு ஒத்து வருகிறது எனப் பார்த்தேன்!

தவிர, சில ஒத்துவரவில்லையெனினும் மற்றவை ஒத்து வராது என நினைப்பது, கோடலின் முழுமையற்றத்தன்மையில் அடங்கிவிடும்/விடலாம்! 😀 எண்ணியல் என்பது மிகுந்த சலிப்பையும் ஆச்சரியத்தினையும் ஒரு சேர ஊட்டும் தன்மையுடையது! அது மாதிரி ஏதாவதுத் தெரிகிறதா எனத் தேடியதன் விளைவே இக்கணக்கீடு.

எனக்கு இவை எல்லாம் — ஆகம விதிகள், சட்டுவ அளவுகள், சக்கர அளவுகள், போன்றவை –பயன்பாட்டுக்கானவற்றை மட்டும் நாம் மிகப் பிடிவாதமாக/வசதிகளுக்காக, வைத்திருந்ததன் விளைவோ என்னவோ!

இவ்விவாதத்தின் விளைவாக, ஜெயபாண்டியன் அவர்கள், பௌத்தயானர் சூத்திரத்தைப் பற்றிய சிறுகுறிப்பொன்றை வரைந்திருந்தார்.  அதை இங்கேக் காணலாம் [3].

அது மட்டும் இல்லாது,  அறிவியல் எப்பொழுதும், எவ்வளவு குழப்பமான சமன்பாடுகளைக் கொண்டிருந்தாலும், symmetry -போன்ற பண்புகள் சீராய் அமைந்து, சமன்பாட்டை எளிதாக்கிவிடும், ஆச்சரியம் என்னவெனில் சில விசயங்களில், இயற்கையும் நாம் எழுதியது போலவே, சீராய் இயங்குவதும்!    அது போல் இருபடியாய் இருப்பதை ஒருபடியாய் மாற்றுவதும் பல வகைகளில் நல்லதாக சில உதாரணங்களின் வழிக் காணலாம்!

சார்பியற் குவாண்டவியலில் நேரியலாக்கம்

நேரியல் பண்புகளோடு இருப்பது, எப்பொழுதும் நல்லது தான்!  சட்டச்சார்பிலா குவாண்டவியலின்  (non-relativistic  quantum mechanics) சுரோடிங்கரின் (Schrödinger) இருபடி சமன்பாட்டின் ஒழுங்கற்றத் தன்மையை,

[-\frac{\hbar^2}{2m} \nabla^2 + (E-V)] \psi(x,t) = -i\hbar \frac{\partial\psi(x,t)}{\partial t}

டிராக் அவர்கள், சட்டச்சார்பு கொண்ட குவாண்டவியலுக்கான நேரியற்சமன்பாடாக அல்லது ஒருபடிச் சமன்பாடு ஆக்குவதன் மூலம் தீர்வை எளிதாக மாற்ற விழைந்தார்!  முதலில் சுரோடிங்கரின் சமன்பாட்டை சார்பியலோடுக் கலந்தால் அது,

(-c^2 \hbar^2 \nabla^2 +m^2 c^4) \psi(x,t) =(-i\hbar \frac{\partial \psi(x,t)}{\partial t})^2  (இருபடி)கிளெயின்-கோர்டான் சமன்பாடு (Klein-Gordon Eqn) என அமையும்.

பின்பு நேரியற் அணிக் கோட்பாட்டின் மூலம்,  (-i \hbar \partial^\mu \gamma_\mu -mc )\psi = 0 என டிராக் சமன்பாட்டை எழுதலாம்.

(Dirac Equation \partial^\mu, \gamma_\mu என்பன முறையே 4(பரிமாண)-செயலிகள்,  டிராக் \gamma அணிகள் )

சமன்பாடுகளின் நுட்பங்கள் தற்பொழுது தேவையில்லாதது.  ஆனால் அதன் படிகளைக் காண்க.  டிராக் சமன்பாடு வெறும் ஒருபடிச் சமன்பாடு..  (^\mu என்பது படியல்ல.. அது வெற்றுக் குறி (Einstein Summation index or dummy index)).  இச்சமன்பாட்டின் மூலம், குவாண்ட இயற்கணிதத்தின் அடிப்படைக்கல் நாட்டப்பட்டது.

இந்த சமன்பாட்டின் விளைவால், பாசிட்டிரான் எனும் எதிர்துகள் உதித்தது!  இது எதிர்மத்துகளின் அடிப்படையை விதைத்தது! பாசிட்டிரான்,  எலக்றானின் எதிர்மத்துகள்!  அதாவது பாசிட்டிரானின் சக்தி–எதிர்ம அளவில் இருந்தது Negative energy — இது அவருடையக் காலத்தில், இயற்கைக்குப் புறம்பானவொன்று!  ஆயினும் எண்ணியல் தொடர்புகள் பல,  இயற்கையில், பற்பல விளைவுகளில் இருப்பதைக் காண முடிந்ததைப் போல், போஸ்-ஐன்ஸ்டைன் குளிர்வித்தலில் எதிர்ம சக்தியின் நிரூபணத்தை ஆய்வின் வழிக் கண்டறிந்துள்ளனர்.   இங்கு பயன்பாடு — கோட்பாடாக்கப் பட்டுள்ளது!

பேராசிரியர் செல்வக்குமார் உட்பதி தொகை மின்சுற்றுக் கணக்கீடுகளில் இருபடிகள் இல்லாமலும், வர்க்கமூலம் இல்லாமலும் பயன்படுத்த வேண்டியதைக் குறிப்பிட்டிருந்தார் [4].   அந்தத் தளத்தில் பௌத்தயானரின் சூத்திரத்தையும் விவாதித்துள்ளனர்!

பழங்கால விற்பன்னர்கள்

பாரதத்தின் பண்பாடு மற்றும் தேடலின் சேகரங்களைக் கற்றலின் பொருட்டு பிறநாட்டினர் பயணக்குறிப்புகளில் பகிர்ந்துள்ளதாய் வரலாறு உள்ளன.  அக்குறிப்புகளில் பல, மந்திர தந்திர அல்லது அப்பொழுது இருந்த மாயவித்தைகள் என நிறைய விசயங்களை சந்தேகக்கண் கொண்டு நோக்கினாலும், தத்துவம் சார்ந்த அறிவுப் பரிமாற்றங்கள் வெவ்வேறு அளவுகளில் நடந்துள்ளது உண்மை.   நாம் எப்படி கணிதத்தையும் அறிவியலையும் மதம் சார்ந்த அல்லது சடங்குகள் சார்ந்த ஒரு விசயமாக உருவாக்கினோமோ, உலகின் பிற பகுதிகளிலும் அக்கால அறிவியல் அதே அளவில் நடந்தேறியதையும் அவ்வப்போதுக் காண முடிகிறது.

நான் இவற்றைப் பார்த்துப் பூரிப்பதோ தவிர்ப்பதோ இல்லை, முடிந்தால் உடனே என்னவென்று ஆய்வேன், அல்லது கிடப்பில் கிடக்கும்!  ஆயினும், ஒரு வேலையை, நாம் தற்போது செய்வது போல், பழங்காலத்து ஆட்களால் செய்ய முடியாது அல்லது வேறு மாதிரி செய்வார்கள், அதே போல் தான் நவீன அறிவியலைக் கொண்டு காணும் நமக்கும் பழங்காலத்து ஆட்களைப் போல் சிந்திக்க முடியாது, ஆயினும் அதே மாதிரியான சிந்தனையின் முக்கியத்துவம் பார்க்கப்பட வேண்டுமா என்பது சூழலையும் தேவையையும் பொறுத்தது.

வரலாற்று ஆய்வுகளின் முக்கியத்துவம்

ஆனால், பெரும்பாலானத் தருணங்களில்,  பிரச்சினை என்னவென்றால், அவல் தின்பது போல் வரலாற்றை மெல்லுவது தான்.  அறிவியல் மற்றும் கணித வரலாற்றைப் பற்றி தற்போது உள்ள விஞ்ஞானிகள் கண்டுகொள்வதில்லை எனப் பலர் கவலை கொண்டுள்ளனர்.

ஏற்கனவே, அறிவியல் ஆய்வுகளை, பண்டைய, புதிய என வரையறைகளில் பெரும்பாலும், மேற்கத்திய தத்துவங்களிலேயே வைத்துள்ளனர்.  ஆசிய தத்துவங்கள் அடர்வான சாரங்களைப் பெற்றிருந்தாலும், அவற்றை ஏற்றுக் கொள்வதில் மிகப் பெரிய சுணக்கம் உள்ளது.   நேர்மையாக முன்னெடுத்துச் செல்வோரின் அளவுக் குறைவாய் இருப்பதே இதற்கு காரணம்.  சனரஞ்சகமாகவே, அரிஸ்டாட்டில், சாக்ரடீஸ் தத்துவப்பள்ளிகளைப் பற்றி பெரும்பாலானோருக்குத் தெரியும், ஏன் அரிஸ்டாட்டிலுக்கும் முந்தைய பள்ளிகள் கூட சனரஞ்சகமாக அறியப்பட்டுள்ளன!  ஆனால், மாவீரர், பௌத்தர், பாணினி, தக்கசீலப் பல்கலையின் அருமையைப் பற்றி நம்மவர்களுக்கேப் பெரிதும் தெரிவதில்லை.    அப்படி அறியக் கொணர்ந்தாலும்,  இன்ன அளவு என்றில்லாமல் பெரும்புகழ்ச்சிக்கு ஆட்படுத்துவது.. இல்லை, அவை எல்லாம் மதம் சார்ந்தவை என மேம்போக்காகப் பேசுவது என அறவே சம்பந்தமில்லாத எதிரெதிர் இரட்டை நிலைகளுக்குள் சிக்கிக் கொள்வதாக இருப்பது.

பெருமைக்குட்படுத்துதலோடு ஆய்வுக்குட்படுத்துதலும்!

உதாரணத்திற்கு, பிரையான் ஜோசப்சன் எனப்படும் இயற்பியலர், தனது முனைவர் பட்ட ஆய்வின் போது, கண்டறிந்த மீக்கடத்தி சந்தி (Josephson Junction) என்பதைக் கண்டறிந்தார், அது மிகப் பெரியக் கண்டுபிடிப்பு, அவருடைய 25 வயதிலேயே அதற்காக நோபல் பரிசைப் பெற்றார்!  ஆயினும், தற்போது அவருடையக் கட்டுரைகள் பெரும்பாலும், மனதையும் பருப்பொருளையும் (mind-matter) சார்ந்து எழுதும் ஆய்வுக் கட்டுரைகளை, பெரும்பாலானோர் ஒத்துக் கொள்வதில்லை.  ஆர்கைவ் (arXiv) எனப்படும், ஆய்வுக்கட்டுரைகள் எளிதாக எல்லோரையும் சென்றடையச் செய்யும் வகையில் உருவாக்கப்பட்டத் தளம் கூட, அவருடைய சிலக் குறிப்பிட்ட ஆய்வுகளை ஒதுக்கி வைக்கின்றன!  இதில் மூன்று விசயங்களை உணர வேண்டும்!

  1.  அவர் நோபல் பரிசு பெற்றவர் என்பதாலேயே அவருடையவை எல்லா ஆய்வுகளும் ஏற்கப்படவில்லை யென்பது. (நாம் உயர்வு நவில்பவர்கள், ஆயிற்றா?!! )
  2. அப்படி ஒதுக்கி வைப்பது சரிதானா என்பதைப் பற்றியும் விவாதங்கள் நடந்த வண்ணம் உள்ளன.  அதாவது
    •  ஆய்வின் போக்கை, தாம் கொண்ட அறிவை மட்டும் வைத்து, இது சரி அல்லது தவறு என்று சொல்வது சரிதானா என்பது.  அதாவது ஆய்வின் சுதந்திரத்தை அது பறித்துவிடும்.
    • அதற்கான வடிகாலைக் கட்டமைப்பது. (உதாரணம் viXra, அதாவது arXiv-இன் தலைகீழ்! ஆனால் பல முரணானக் கட்டுரைகள் உள்ளன இதில்!)
  3.  இன்னும் ஜோசப்சன்னின் மற்ற ஆய்வுகள் சரியாக அலசப்பட்டு பிரசுரிக்கப்படவும் செய்கிறது.

 

சங்கப்பலகை அனல் புனல்வாதங்கள்!

ஒவ்வொரு கலாச்சாரமும் ஒவ்வொரு மனிதருக்கான வரையறையை வைக்கிறது.  ஆனால், நம்மவர்கள் பெரும்பாலும், அடுத்த நாட்டினரின் பண்பாட்டு உளவியலுக்குள் தத்தம் தலைகளைப் புகுத்த முயற்சிக்கிறார்கள், அதுவும் மிகவும் ஆகவே ஆகாத விசயங்களில்!   அனல்வாதம் புனல்வாதம் என்பது உவமைகளாக இருந்திருந்தால்,  சங்கப் பலகை-பொற்றாமரைக்குளம் என்பவை எல்லாம்  அக்காலத்தைய, editorial board-இன் ஒப்புமைவடிவம்!  வாதங்கள் எல்லாம் தத்துவங்களின் அலசல் –சமூகத்தால் ஏற்கப்பட்ட வடிவத்தைத் தரும் peer-reviewing system.    எல்லாத் தத்துவப் பின்னணி கொண்ட கலாச்சாரத்திலும், இது போன்ற தராசுகள் இருந்திருக்கின்றன.   சில நேரங்களில், வரலாற்றுப் படிமங்கள் கூறுவது போல், அவை கொஞ்சம் கொடுமையாக, யோசிப்போருக்கு நஞ்சையும் புகட்டியிருக்கின்றன, கழுவிலும் ஏற்றியிருக்கின்றன, கல்லைக்கட்டிக் கடலிலும் இறக்கியிருக்கின்றன.

அரைகுறை முன்னோர் புகழ்ச்சியால், உண்மையான வரலாற்றை நாம் தொலைத்துவிடக் கூடாது.  இது முதல் படி, ஆனால், இது மட்டும் போதாது, சரியான வரலாற்றைப் பதிவும் செய்ய வேண்டும். மகிழ்ச்சியான விசயம் என்னவென்றால், பல விஞ்ஞான நண்பர்கள் கிரேக்கத்துக்கும் முந்தைய அறிவியலில் ஆர்வங்கொள்வதும் நடுநிலையோடு இந்திய அறிவியல் வரலாற்றைப் பற்றி பகிர்வதும் ஆகும், ஆனால் மிகக் குறைவான பேர்களே இவ்வேலையை செய்து வருகின்றனர். என்பதும், அவர்களின் பகிர்வுகள் எவ்வளவு சனரஞ்சகமாக எடுக்கப்படுகிறது என்பதைக் காணும் போது அது வருத்தத்திற்குரிய அளவிலேயே உள்ளது.

ஆனால் அறிவியலுக்கும் கட்டுக்கதைப் புனைந்து புல்லுருவியைப் போல் செய்திகளைப் பரப்பி உளுக்கச் செய்தல், கடைந்தெடுத்த முட்டாள்தனம்.

உசாவுத்துணைகள்:

[1] https://archive.org/details/balagzone_gmail

[2] https://www.facebook.com/photo.php?fbid=10207381186028991&set=rpd.1266837112&type=3&theater

[3] https://drive.google.com/file/d/0BzwpbxABzaV5V0lxS0dZeTFhOGM

[4] http://forums.parallax.com/discussion/147522/dog-leg-hypotenuse-approximation

[5] முடிவிலா மின் சுற்றும், கொஞ்சம் ஜனரஞ்சக திண்ம அறிவியலும்!

 

Advertisements

முடிவிலா மின் சுற்றும், கொஞ்சம் ஜனரஞ்சக திண்ம அறிவியலும்!

நண்பர் ஞானசம்பந்தன், இயற்பியல் ஆசிரியர்,  அனுப்பிய ஒருக் கேள்வியினாலும் கதிர் அண்ணாவின் தொடர் சம்பாசணைகளாலும் விளைந்தக் கட்டுரை இது!

இது மாதிரியான முடிவிலாச் சுற்றுக்களை, விளையாட்டாய் சிறுபிராயம் முதல் போட்டுத் திரிவேன், பேரா. ஶ்ரீனிவாசன் (காமராசர் பல்கலை) அவர்கள், ஒரு நாள் இதில் உள்ள விசயங்களைக் கோடிட்டுக் காண்பித்தார் [1].  அது தான் பிபனாக்சி விகிதத்தை இம்மாதிரியான சுற்றுகள் மூலம் காண்பது.

Fibonacci Ratio இயற்கையில் பூவிதழ், சில மரங்களில் இலையமைப்பு, கள்ளிச் செடியின் முள்ளமைவு என எல்லாவற்றிலும் அழகியலாக அமையும் ஒரு விகிதாச்சாரம், சில ஆய்வுகள் குழந்தைகள்/ பெரிய ஓவியர்கள் வரையும் படங்களில் எங்கு சூரியனை வரையவேண்டும் என்பதை அழகியல் நோக்கில் மனம் எடுத்து வரைவதைக் கூறுகிறார்கள். அதுப் பெரும்பாலும் பிபனாக்சி விகிதாச்சாரத்திற்கேற்ப இருப்பதை ஆச்சரியத்தோடு நோக்குகிறார்கள்.

இனி இயற்கையில் அமையும் பிபனாக்சி விகிதத்துக்கும் நாம் செய்யும் செயற்கையான முடிவிலாச்சுற்றுக்கும்,  எப்படித் தொடர்பு ஏற்படுகிறது எனக் காணலாம்.

InfyCkt-Rஇணைச்சுற்றின் மின் தடையளவு எப்பொழுதும்  பின்னவடிவில் இருப்பதால், இம்மாதிரியானத் தொடர் சுற்றின் மின் தடையளவும் பின்ன வடிவாக அமையும் தானே?!  இது பார்ப்பதற்கு சுவாரசியமான இராமானுஜனின் தொடர்பின்னம் போலவும் இருக்கும்!!

படத்திலுள்ளது போல் ஒரு அமைவுக்கு, AB தொடர்பில் உணரப்படும் மின் தடை, இவ்வாறுக் கணக்கிடப்படலாம்,

R_{AB}=R1+\cfrac{1}{\cfrac{1}{R_2}+\cfrac{1}{R_1+\cfrac{1}{\cfrac{1}{R_2}+\cfrac{1}{R_1+R_2}}}}

இதுவே ஒரு முடிவிலாச் சுற்றில், அந்த மின் தடையின் அளவு

R_{AB}^{\,(\infty)}=R1+\cfrac{1}{\cfrac{1}{R_2}+\cfrac{1}{R_1+\cfrac{1}{\cfrac{1}{R_2}+\cfrac{1}{R_1+\cfrac{1}{\ddots}}}}}

என மாறும்.   ஆக மின் தடை அமைவும் தொடர் பின்னமும் வந்துவிட்டது!!

இப்பொழுது,  R_1 மற்றும் R_2 ஆகியனவற்றைக் கொண்டு, R_1 R_2 =1 என அமைவது போல் எழுதும் பொழுது, R_1=1/R_2 என ஆகும்.  ஒரு எளிமையானக் கணக்கீட்டுக்காக, R_1 =1  எனக் கொண்டோமானால், மின் தடையின் அளவு

R_{AB} = 1+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{\ddots}}}

இவ்வாறாக அமையும்.

ஒவ்வொரு பின்னமாக சுருக்கினால், பின்னங்கள் ஒரு எண்ணை நோக்கிக் குவிவதைக் காணலாம். எடுத்துக்காட்டாக, முதல் ஒரு இணைப்புக்கு, R_{AB}^{\,(1)}=\frac{1}{1} எனவும் இரண்டாவதுச் சுற்றுக்கு  R_{AB}^{\,(2)}=\frac{2}{1}, எனவும், அப்படியே அடுத்தடுத்த சுற்றுக்களைச் சேர்க்கும் பொழுது  R_{AB}^{\,(3)}=\frac{3}{2}, R_{AB}^{\,(4)}=\frac{5}{3},  என்பவையும் ஏனையவையும் வரும்.  (n+1)-வது சுற்றை இணைக்கும் பொழுது, R_{AB}^{\,(n+1)}=\frac{\phi_{n+1}}{\phi_n} என அமையும்.

இது n \rightarrow \infty என முடிவிலாச் சுற்றாக அமையும் பொழுது, மின் தடையானது, தெய்வீக விகிதமான பிபனாக்சி விகிதத்தை R_{AB}^{(\infty)}=\frac{1+ \sqrt{5}}{2}\approx 1.618 அடைவதைக் கணக்கிடலாம்!!

வெவ்வேறு நிலைகளில் இது பற்றிய ஆய்வினை, திண்மவியலின் முக்கியமான விளைவான, ஆண்டர்சன் குறுக்கத்தையும் (Anderson Localization) தனியாகக் கணக்கிட்டு வருகிறேன். பனுவல்களில் பகிரும் அளவுக்கு இன்னும் வளரவில்லை. கூடிய சீக்கிரம் வெளிவரும்! பேரா. ந. குமாரின் (இராமன் ஆய்வுக்கழகம்)கட்டுரையில் இதே போன்ற சுற்றை, மின் தூண்டல் நிலைமம் கொண்டும் மின் தேக்கிக் கொண்டும் கணக்கிட்டுள்ளதைக் காணலாம் [2].  இக்கட்டுரை, அடிப்படை இயற்பியலின் கேள்விகளில் ஒன்றான, ஒருங்கமைவு குலைதலையும்  (Broken Symmetry உராய்வு, தேய்மானம், இழுப்புவிசையின் அடிப்படையையும்  சார்ந்தது.   நேர ஒருங்கில் பின்னோக்கி செல்லவியலாத் (Broken time-reversal symmetry) தன்மையினை முடிவிலா மின்சுற்றுகள் கொண்டு விளக்கிக் காண்பிக்கப்பட்டுள்ளது.   நாம் போன வகையில் எப்படிச் செய்தோமோ அதே போல், இதற்கும் மின் ஏற்பு/முறிக்கும் திறனைக் கணக்கிடலாம்.

InfyCkt-LCR

Z_{AB}^{\,(\infty)}=Z_L+\cfrac{1}{\cfrac{1}{Z_C}+\cfrac{1}{Z_L+\cfrac{1}{\cfrac{1}{Z_C}+\cfrac{1}{Z_L+\cfrac{1}{\ddots}}}}}

இதேச் சுற்றை இவ்வாறு, பூவிதழ் அமைவு போல் மாற்றி அமைக்கும் பொழுது,

InfyCkt-LCR-3தொடர் சுற்றில் ஒரே விதமானவை மாறி மாறி வருவதால் சுருக்கமாக, (n+1)-ஆவது சுற்றில் ஏற்படும் மாற்றத்தை, n-ஆவதுச் சுற்றில் உள்ள மின்னோட்ட ஏற்பில் ஏற்படும் மாறுபாட்டை வைத்தேக் கணக்கிடலாம்.

Z_{n+1}\equiv f(Z_n)=\dfrac{Z_n}{1+i \omega C Z_n}+i\dfrac{ \omega L Z_n}{i \omega L +Z_n}

இதில் \omega அதிர்வெண் ஆகிறது, L, C, ஆகியன முறையே தந்தூண்டல் திறன், மின் தேக்கத்திறனைக் குறிப்பது.  மேலுள்ள சமன்பாட்டில் இருந்து, அதிர்வெண் சுழியம் ஆகும் பொழுது, Z_{n+1} = Z_n என்ற மிகச் சாதாரணப் பண்பு வெளிப்படும், அதே நேரம்,  n\rightarrow \infty என்பது முக்கியத்துவம் வாய்ந்த விளைவினைத் தரும், அதாவது, அலைவுப்பண்புகளினால் வேலை செய்யும் நிலைம, தேக்கப் பண்புகள் ஒடுங்கி, அலைவுறா மின்னோட்ட மின் தடையளவில் குவியும், இது நமது மின்னழுத்த மூலத்தில் அலைவுப்பண்பு இருந்தாலும் வரக்கூடியது!

ஆக, இருப்பது போல் இல்லாதிருப்பதும், இல்லாதிருப்பது போல் இருப்பதுமாய் அமைவது, இத்தொடர்களின் சிறப்பு! அதனால், தத்துவார்த்த கணிதம் மற்றும் இயற்பியலின் முக்கியமானதாகிறது!

அது சரி, வேண்டிய மின் தடையை வேண்டிய அளவு செய்து கொள்ள குறைக்கடத்திகளும் இது போன்ற சுற்றுக்களும் ஏற்கனவே உள்ளன,  அப்புறம் எதற்கு இந்த ஆய்வும் தத்துவமும்?  இது மின் தடையை மாற்றுவதும் பெறுவதையும் பற்றியதல்ல, எங்களுடையக் கேள்வி ஏன் தடுப்பான் வேலை செய்கிறது என்பது. ஒரு எலக்றான் ஓடும் பொழுது எத்திசையில் பயணிக்க வேண்டும் என்பதை எது தீர்மானிக்கிறது.

அது ஒரு ஒழுங்கற்றப் போக்கா (Random walk) எனக் கண்டதன் விளைவு தான் ஆண்டர்சன் குறுக்கம் [3]. அது ஒரு, இரு பரிமாணத்திலிருந்து அதிகமான பரிமாணத்திற்குப்  போகும் பொழுது, பருப்பொருளின் மின் தடையானதுப்  பரிமாணத்திற்கேற்ப விசேச வடிவில் மாறுகிறது, அதாவது ஒரே வேதிமூலக்கூறுகளைக் கொண்டத் திண்மத்தில்,   மெல்லியத் தகடு போன்றத் தடுப்பானிற்கும் பருமனானத் தடுப்பானிற்கும் (Bulk resistance) வேறுபாடு உள்ளது என்பதானது. அதன் வடிவியல் குவாண்ட பண்புகள் பொறுத்து மாறுபடுவதையும் கண்டறிந்து வருகின்றனர்.

ஆக, இந்த அமைவில், தடுப்பானின் அளவு எப்படி மாறுகிறது எனக் காணும் பொழுது, வியப்பாக இருந்தது, அதற்காக, ஆண்டர்சன் அவர்கட்கு நோபல் பரிசு வழங்கப்பட்டது. (ஆண்டர்சன் அவர்களின் மாணவர், பேரா. பாஸ்கரன் (கணித அறிவியற்கழகம்) அவ்ர்களின் சீடன், இந்த அடிப்பொடி..)  தற்பொழுது, பற்பல திண்மவியல் கண்டுபிடிப்புகள் தினந்தோறும் நடைபெறுகிறது, அவற்றில் எப்படி எலக்றானின் ஓட்டம் ஓரிடத்தில் குறுக்கப்படுகிறதா, அல்லது தடையில்லா ஓட்டமாக இருக்கிறதா (localization and delocalization) எனக் காண்பதும் முக்கியத்துவம் வாய்ந்த ஆய்வாக உள்ளது,  அதே மாதிரி தற்பொழுது ஹால் விளைவுகளை (Classical Hall effect), பருமன் அதிகமான மற்றும் மெல்லியப் புதிய திண்மப் பொருட்களில் காணும் பொழுது, கொத்தாக எலக்றான்கள் (macrocopic/ensemble current) பாயும் எலக்றானியலின் (classical electronics) விதிகளுட்படாத விசயங்களை, இயற்கையாகப் பண்பாகக் காண முடிகிறது. இவை பற்றிப் பிறிதொரு சமயம் காண்போம்!

பேரா. பாஸ்கரன், எலக்றானின் சுழற்சியை (spin) வைத்து சில spinonics ஆய்வுகளைச் செய்து வருகிறார், spinonics-ல் இன்னும் வியக்கத்தக்க வகையில் பல விசயங்களைக் காண முடிகிறது, அவை தற்பொழுதுள்ள் எலக்றானியலின் அடிப்படைத் தடுமாற்றங்களான, வேகம், அதிக அதிர்வெண்ணில் உள்ள பிரச்சினைகள்  கடந்து அமைவது மிகச்சிறப்பான விசயம்.  இத்துறையிலும் நவீன திண்மவியலிலும், அதன் உட்துறையான அதி வெப்ப மீக்கடத்திகளிலும் (High Temperature Superconductors) பாஸ்கரன் அவர்களின் ஆய்வுகள் மிக முக்கியத்துவம் வாய்ந்தனவாகக் காணப்படுகிறது.

இதே மாதிரி,  DNA-வில் அடிப்படைக் கூறுகள் (A, T, G, C) அமைவிலும் இந்த பிபனாக்சி விகிதாச்சாரம் உள்ளது வியப்பானது, அதுவே, பயன்பாட்டு அளவிலான முடிவிலாத் தொடர் சுற்றிலும் அமைவது, வியப்பாக அமைகிறது.   இதன் மூலம் தொடர் சுற்றுகள் இயற்கையினை எவ்வளவு பிரதிபலிக்க முடியும் என்பதைக் காண விழைகிறோம்! இயற்கையின் அடிநாதத்தை அறிந்து கொள்ள இவை போன்றவை உதவும்.

உசாவித் துணைகள்:

  1. T. P. Srinivasan,  Fibonacci sequence, golden ratio, and a network of resistors, Am. J. Phys. 60, 461 (1992).
  2. N. Kumar,  Resistance without resistors: An anomaly, arXiv:0706.4384 (2007).
  3. P W Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109, 1492 (1958).